Jesus Ruiz-Santaquiteria, Anibal Pedraza, Oscar Deniz, Gloria Bueno
{"title":"DT4PEIS: detection transformers for parasitic egg instance segmentation","authors":"Jesus Ruiz-Santaquiteria, Anibal Pedraza, Oscar Deniz, Gloria Bueno","doi":"10.1007/s10489-024-06199-y","DOIUrl":null,"url":null,"abstract":"<div><p>Parasitic infections pose a significant health risk in many regions worldwide, requiring rapid and reliable diagnostic methods to identify and treat affected individuals. Recent advancements in deep learning have significantly improved the accuracy and efficiency of microscopic image analysis workflows, enabling its application in various domains such as medical diagnostics and microbiology. This work presents DT4PEIS, a novel two-stage architecture for the instance segmentation of parasite eggs in microscopic images. The first stage is a DEtection TRansformer (DETR) based architecture, which predicts the bounding boxes and class labels of the detected eggs. Then, the predicted bounding boxes are used as prompts to guide the segmentation process in the second stage, which is based on the Segment Anything Model (SAM) architecture. We evaluate the performance of the proposed method on the Chula-ParasiteEgg-11 dataset. Our results show that the proposed method outperforms the other architectures in terms of segmentation <i>mean Average Precision</i> (<i>mAP</i>), providing a more detailed and accurate representation of the detected eggs.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06199-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Parasitic infections pose a significant health risk in many regions worldwide, requiring rapid and reliable diagnostic methods to identify and treat affected individuals. Recent advancements in deep learning have significantly improved the accuracy and efficiency of microscopic image analysis workflows, enabling its application in various domains such as medical diagnostics and microbiology. This work presents DT4PEIS, a novel two-stage architecture for the instance segmentation of parasite eggs in microscopic images. The first stage is a DEtection TRansformer (DETR) based architecture, which predicts the bounding boxes and class labels of the detected eggs. Then, the predicted bounding boxes are used as prompts to guide the segmentation process in the second stage, which is based on the Segment Anything Model (SAM) architecture. We evaluate the performance of the proposed method on the Chula-ParasiteEgg-11 dataset. Our results show that the proposed method outperforms the other architectures in terms of segmentation mean Average Precision (mAP), providing a more detailed and accurate representation of the detected eggs.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.