{"title":"Abnormal H3K27me3 underlies degenerative spermatogonial stem cells in cryptorchid testis.","authors":"Kazushige Kuroha, Ivana Dočkal, Uroš Radović, Kuniko Nakajima, Ikue Hoshi, Shion Matsuda, Noriko Kojitani, Kazuyuki Ohbo, Shin-Ichi Tomizawa","doi":"10.1242/dev.204239","DOIUrl":null,"url":null,"abstract":"<p><p>Cryptorchidism is the most frequent congenital defect in newborn males characterized by the absence of the testis from the scrotum. Approximately 90% of patients with untreated bilateral cryptorchidism exhibit azoospermia due to defective spermatogenesis in the affected testis. While abnormal spermatogonial stem cell maintenance or differentiation is suggested to cause germ cell degeneration in the cryptorchid testis, underlying molecular mechanisms remain unclear. Here we profiled spermatogonial epigenetic landscapes using surgically induced cryptorchid testis in the mouse. We show that cryptorchidism leads to alterations in local, but not global H3K27me3 and H3K9me3 in undifferentiated spermatogonia. Of these, the loss of H3K27me3 was correlated with activation of developmental and proapoptotic pathway genes that are repressed by the polycomb machinery in germ cells. Cryptorchid spermatogonia exhibit the increase of H3K27me3 demethylases KDM6A and KMD6B. Furthermore, we reveal that an increased temperature leads to Kdm6a/b upregulation in germline stem cells cultured in vitro. Thus, our study suggests that temperature-dependent histone demethylation may induce mRNA dysregulation due to the partial loss of H3K27me3 in spermatogonia.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204239","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cryptorchidism is the most frequent congenital defect in newborn males characterized by the absence of the testis from the scrotum. Approximately 90% of patients with untreated bilateral cryptorchidism exhibit azoospermia due to defective spermatogenesis in the affected testis. While abnormal spermatogonial stem cell maintenance or differentiation is suggested to cause germ cell degeneration in the cryptorchid testis, underlying molecular mechanisms remain unclear. Here we profiled spermatogonial epigenetic landscapes using surgically induced cryptorchid testis in the mouse. We show that cryptorchidism leads to alterations in local, but not global H3K27me3 and H3K9me3 in undifferentiated spermatogonia. Of these, the loss of H3K27me3 was correlated with activation of developmental and proapoptotic pathway genes that are repressed by the polycomb machinery in germ cells. Cryptorchid spermatogonia exhibit the increase of H3K27me3 demethylases KDM6A and KMD6B. Furthermore, we reveal that an increased temperature leads to Kdm6a/b upregulation in germline stem cells cultured in vitro. Thus, our study suggests that temperature-dependent histone demethylation may induce mRNA dysregulation due to the partial loss of H3K27me3 in spermatogonia.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.