Advancements and future perspectives in nutrient film technique hydroponic system: a comprehensive review and bibliometric analysis.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES Frontiers in Plant Science Pub Date : 2024-12-18 eCollection Date: 2024-01-01 DOI:10.3389/fpls.2024.1504792
Onofrio Davide Palmitessa, Angelo Signore, Pietro Santamaria
{"title":"Advancements and future perspectives in nutrient film technique hydroponic system: a comprehensive review and bibliometric analysis.","authors":"Onofrio Davide Palmitessa, Angelo Signore, Pietro Santamaria","doi":"10.3389/fpls.2024.1504792","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of climate change, reducing the environmental impact of agriculture has become increasingly critical. To ensure sustainable food production, it is essential to adopt cultivation techniques that maximize resource efficiency, particularly in water and nutrient usage. The Nutrient Film Technique (NFT) is one such hydroponic system, designed to optimize water and nutrient use, making it a valuable tool for sustainable agriculture. This bibliometric review examines the evolution of NFT research from 1977 to 2023, focusing on the growing interest in this method as a solution to the agricultural challenges posed by climate change. Through the analysis of 774 scientific documents, this review highlights an upward trend in NFT-related studies, with a noticeable shift from conference proceedings to peer-reviewed journal articles, particularly in recent years. <i>Acta Horticulturae</i> has been a leading journal in this field, underscoring the significance of early conference contributions. Lettuce and tomatoes have emerged as the primary crops studied in NFT systems, demonstrating the technique's broad applicability. Research on lettuce has primarily focused on nitrate accumulation and biofortification, aiming to improve both the nutritional quality and safety of the crop. Studies on tomatoes have explored challenges related to oxygen concentration in the nutrient solution, where innovations such as the Nutrient Drip Technique (NDT) and the New Growing System (NGS) have shown promise in addressing these issues. Other key areas of NFT research include the effects of water salinity on crop growth and the integration of NFT with aquaponics systems, highlighting its potential for sustainable, water-efficient crop production. However, challenges such as nutrient imbalances and disease management persist. This review underscores the growing relevance of NFT in the pursuit of environmentally sustainable agriculture. Continued innovation and research are essential to optimizing nutrient management, refining environmental controls, and exploring new crop varieties, thereby enhancing the potential of NFT for sustainable farming systems.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1504792"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1504792","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of climate change, reducing the environmental impact of agriculture has become increasingly critical. To ensure sustainable food production, it is essential to adopt cultivation techniques that maximize resource efficiency, particularly in water and nutrient usage. The Nutrient Film Technique (NFT) is one such hydroponic system, designed to optimize water and nutrient use, making it a valuable tool for sustainable agriculture. This bibliometric review examines the evolution of NFT research from 1977 to 2023, focusing on the growing interest in this method as a solution to the agricultural challenges posed by climate change. Through the analysis of 774 scientific documents, this review highlights an upward trend in NFT-related studies, with a noticeable shift from conference proceedings to peer-reviewed journal articles, particularly in recent years. Acta Horticulturae has been a leading journal in this field, underscoring the significance of early conference contributions. Lettuce and tomatoes have emerged as the primary crops studied in NFT systems, demonstrating the technique's broad applicability. Research on lettuce has primarily focused on nitrate accumulation and biofortification, aiming to improve both the nutritional quality and safety of the crop. Studies on tomatoes have explored challenges related to oxygen concentration in the nutrient solution, where innovations such as the Nutrient Drip Technique (NDT) and the New Growing System (NGS) have shown promise in addressing these issues. Other key areas of NFT research include the effects of water salinity on crop growth and the integration of NFT with aquaponics systems, highlighting its potential for sustainable, water-efficient crop production. However, challenges such as nutrient imbalances and disease management persist. This review underscores the growing relevance of NFT in the pursuit of environmentally sustainable agriculture. Continued innovation and research are essential to optimizing nutrient management, refining environmental controls, and exploring new crop varieties, thereby enhancing the potential of NFT for sustainable farming systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
期刊最新文献
Diversity and plant growth promotion potential of endophytic fungi isolated from hairy vetch in Japan. Early allelopathic input and later nutrient addition mediated by litter decomposition of invasive Solidago canadensis affect native plant and facilitate its invasion. Efficient detection of eyes on potato tubers using deep-learning for robotic high-throughput sampling. Genome-wide analysis of Nicotiana tabacum IDD genes identifies NtIDD9 as a regulator of leaf angle. Improving resistance to lepidopteran pests and herbicide using Sanming dominant genic male sterile rice (Oryza sativa L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1