From laboratory to field: cross-domain few-shot learning for crop disease identification in the field.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES Frontiers in Plant Science Pub Date : 2024-12-18 eCollection Date: 2024-01-01 DOI:10.3389/fpls.2024.1434222
Sen Yang, Quan Feng, Jianhua Zhang, Wanxia Yang, Wenwei Zhou, Wenbo Yan
{"title":"From laboratory to field: cross-domain few-shot learning for crop disease identification in the field.","authors":"Sen Yang, Quan Feng, Jianhua Zhang, Wanxia Yang, Wenwei Zhou, Wenbo Yan","doi":"10.3389/fpls.2024.1434222","DOIUrl":null,"url":null,"abstract":"<p><p>Few-shot learning (FSL) methods have made remarkable progress in the field of plant disease recognition, especially in scenarios with limited available samples. However, current FSL approaches are usually limited to a restrictive setting where base classes and novel classes come from the same domain such as PlantVillage. Consequently, when the model is generalized to new domains (field disease datasets), its performance drops sharply. In this work, we revisit the cross-domain performance of existing FSL methods from both data and model perspectives, aiming to better achieve cross-domain generalization of disease by exploring inter-domain correlations. Specifically, we propose a broader cross-domain few-shot learning(CD-FSL) framework for crop disease identification that allows the classifier to generalize to previously unseen categories and domains. Within this framework, three representative CD-FSL models were developed by integrating the Brownian distance covariance (BCD) module and improving the general feature extractor, namely metric-based CD-FSL(CDFSL-BDC), optimization-based CD-FSL(CDFSL-MAML), and non-meta-learning-based CD-FSL (CDFSL-NML). To capture the impact of domain shift on model performance, six public datasets with inconsistent feature distributions between domains were selected as source domains. We provide a unified testbed to conduct extensive meta-training and meta-testing experiments on the proposed benchmarks to evaluate the generalization performance of CD-FSL in the disease domain. The results showed that the accuracy of the three CD-FSL models improved significantly as the inter-domain similarity increased. Compared with other state-of-the-art CD-FSL models, the CDFSL-BDC models had the best average performance under different domain gaps. Shifting from the pest domain to the crop disease domain, the CDFSL-BDC model achieved an accuracy of 63.95% and 80.13% in the 1-shot/5-shot setting, respectively. Furthermore, extensive evaluation on a multi-domain datasets demonstrated that multi-domain learning exhibits stronger domain transferability compared to single-domain learning when there is a large domain gap between the source and target domain. These comparative results suggest that optimizing the CD-FSL method from a data perspective is highly effective for solving disease identification tasks in field environments. This study holds promise for expanding the application of deep learning techniques in disease detection and provides a technical reference for cross-domain disease detection.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1434222"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1434222","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot learning (FSL) methods have made remarkable progress in the field of plant disease recognition, especially in scenarios with limited available samples. However, current FSL approaches are usually limited to a restrictive setting where base classes and novel classes come from the same domain such as PlantVillage. Consequently, when the model is generalized to new domains (field disease datasets), its performance drops sharply. In this work, we revisit the cross-domain performance of existing FSL methods from both data and model perspectives, aiming to better achieve cross-domain generalization of disease by exploring inter-domain correlations. Specifically, we propose a broader cross-domain few-shot learning(CD-FSL) framework for crop disease identification that allows the classifier to generalize to previously unseen categories and domains. Within this framework, three representative CD-FSL models were developed by integrating the Brownian distance covariance (BCD) module and improving the general feature extractor, namely metric-based CD-FSL(CDFSL-BDC), optimization-based CD-FSL(CDFSL-MAML), and non-meta-learning-based CD-FSL (CDFSL-NML). To capture the impact of domain shift on model performance, six public datasets with inconsistent feature distributions between domains were selected as source domains. We provide a unified testbed to conduct extensive meta-training and meta-testing experiments on the proposed benchmarks to evaluate the generalization performance of CD-FSL in the disease domain. The results showed that the accuracy of the three CD-FSL models improved significantly as the inter-domain similarity increased. Compared with other state-of-the-art CD-FSL models, the CDFSL-BDC models had the best average performance under different domain gaps. Shifting from the pest domain to the crop disease domain, the CDFSL-BDC model achieved an accuracy of 63.95% and 80.13% in the 1-shot/5-shot setting, respectively. Furthermore, extensive evaluation on a multi-domain datasets demonstrated that multi-domain learning exhibits stronger domain transferability compared to single-domain learning when there is a large domain gap between the source and target domain. These comparative results suggest that optimizing the CD-FSL method from a data perspective is highly effective for solving disease identification tasks in field environments. This study holds promise for expanding the application of deep learning techniques in disease detection and provides a technical reference for cross-domain disease detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
期刊最新文献
Diversity and plant growth promotion potential of endophytic fungi isolated from hairy vetch in Japan. Early allelopathic input and later nutrient addition mediated by litter decomposition of invasive Solidago canadensis affect native plant and facilitate its invasion. Efficient detection of eyes on potato tubers using deep-learning for robotic high-throughput sampling. Genome-wide analysis of Nicotiana tabacum IDD genes identifies NtIDD9 as a regulator of leaf angle. Improving resistance to lepidopteran pests and herbicide using Sanming dominant genic male sterile rice (Oryza sativa L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1