Yuanyuan Chen, Xiaodan Fan, Chaowen Shi, Zhiyan Shi, Chaojie Wang
{"title":"A joint analysis of single cell transcriptomics and proteomics using transformer.","authors":"Yuanyuan Chen, Xiaodan Fan, Chaowen Shi, Zhiyan Shi, Chaojie Wang","doi":"10.1038/s41540-024-00484-9","DOIUrl":null,"url":null,"abstract":"<p><p>CITE-seq provides a powerful method for simultaneously measuring RNA and protein expression at the single-cell level. The integrated analysis of RNA and protein expression in identical cells is crucial for revealing cellular heterogeneity. However, the high experimental costs associated with CITE-seq limit its widespread application. In this paper, we propose scTEL, a deep learning framework based on Transformer encoder layers, to establish a mapping from sequenced RNA expression to unobserved protein expression in the same cells. This computation-based approach significantly reduces the experimental costs of protein expression sequencing. We are now able to predict protein expression using single-cell RNA sequencing (scRNA-seq) data, which is well-established and available at a lower cost. Moreover, our scTEL model offers a unified framework for integrating multiple CITE-seq datasets, addressing the challenge posed by the partial overlap of protein panels across different datasets. Empirical validation on public CITE-seq datasets demonstrates scTEL significantly outperforms existing methods.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"1"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00484-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CITE-seq provides a powerful method for simultaneously measuring RNA and protein expression at the single-cell level. The integrated analysis of RNA and protein expression in identical cells is crucial for revealing cellular heterogeneity. However, the high experimental costs associated with CITE-seq limit its widespread application. In this paper, we propose scTEL, a deep learning framework based on Transformer encoder layers, to establish a mapping from sequenced RNA expression to unobserved protein expression in the same cells. This computation-based approach significantly reduces the experimental costs of protein expression sequencing. We are now able to predict protein expression using single-cell RNA sequencing (scRNA-seq) data, which is well-established and available at a lower cost. Moreover, our scTEL model offers a unified framework for integrating multiple CITE-seq datasets, addressing the challenge posed by the partial overlap of protein panels across different datasets. Empirical validation on public CITE-seq datasets demonstrates scTEL significantly outperforms existing methods.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.