Jieru Ma, Hong-Li Ren, Ming Cai, Yi Deng, Chenguang Zhou, Jian Li, Huizheng Che, Lin Wang
{"title":"Skillful seasonal predictions of continental East-Asian summer rainfall by integrating its spatio-temporal evolution","authors":"Jieru Ma, Hong-Li Ren, Ming Cai, Yi Deng, Chenguang Zhou, Jian Li, Huizheng Che, Lin Wang","doi":"10.1038/s41467-024-55271-1","DOIUrl":null,"url":null,"abstract":"<p>Skillful seasonal climate prediction is critical for food and water security over the world’s heavily populated regions, such as in continental East Asia. Current models, however, face significant difficulties in predicting the summer mean rainfall anomaly over continental East Asia, and forecasting rainfall spatiotemporal evolution presents an even greater challenge. Here, we benefit from integrating the spatiotemporal evolution of rainfall to identify the most crucial patterns intrinsic to continental East-Asian rainfall anomalies. A physical-statistical prediction model is developed to capture the predictability offered by these patterns through a detection of precursor signals that describe slowly varying lower boundary conditions. The presented model demonstrates a prediction skill of 0.51, at least twice as high as that of the best dynamical models available (0.26), indicating improved prediction for both the spatiotemporal evolution and summer mean of rainfall anomalies. This advance marks a crucial step toward delivering skillful seasonal predictions to populations in need of new tools for managing risks of both near-term climate disasters, such as floods and droughts, and long-term climate change.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"72 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55271-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Skillful seasonal climate prediction is critical for food and water security over the world’s heavily populated regions, such as in continental East Asia. Current models, however, face significant difficulties in predicting the summer mean rainfall anomaly over continental East Asia, and forecasting rainfall spatiotemporal evolution presents an even greater challenge. Here, we benefit from integrating the spatiotemporal evolution of rainfall to identify the most crucial patterns intrinsic to continental East-Asian rainfall anomalies. A physical-statistical prediction model is developed to capture the predictability offered by these patterns through a detection of precursor signals that describe slowly varying lower boundary conditions. The presented model demonstrates a prediction skill of 0.51, at least twice as high as that of the best dynamical models available (0.26), indicating improved prediction for both the spatiotemporal evolution and summer mean of rainfall anomalies. This advance marks a crucial step toward delivering skillful seasonal predictions to populations in need of new tools for managing risks of both near-term climate disasters, such as floods and droughts, and long-term climate change.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.