Wonhyeong Jang, Hyejin Yoo, Dongjun Shin, Seokjin Noh, Jin Yeong Kim
{"title":"Colorimetric identification of colorless acid vapors using a metal-organic framework-based sensor","authors":"Wonhyeong Jang, Hyejin Yoo, Dongjun Shin, Seokjin Noh, Jin Yeong Kim","doi":"10.1038/s41467-024-55774-x","DOIUrl":null,"url":null,"abstract":"<p>In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors. The sensor exhibits a cyan-to-yellow shift when exposed to HCl vapor and can visually differentiate various acidic vapors (HF, HBr, and HI) through unique color changes. Furthermore, the compatibility of the MOF-based sensor with multiple metal ions having atomic-level dispersion broadens its discrimination range, enabling the identification of six different colorless acid vapors within a single sensor domain. Additionally, by incorporating a flexible polymer, the MOF-808-EDTA-Cu has been successfully processed into a portable miniaturized acid sensor, exhibiting distinct color changes that can be easily monitored by the naked eye and camera sensors. This provides experimental validation as a practical sensor capable of on-site 24-hour monitoring in the real world.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"390 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55774-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors. The sensor exhibits a cyan-to-yellow shift when exposed to HCl vapor and can visually differentiate various acidic vapors (HF, HBr, and HI) through unique color changes. Furthermore, the compatibility of the MOF-based sensor with multiple metal ions having atomic-level dispersion broadens its discrimination range, enabling the identification of six different colorless acid vapors within a single sensor domain. Additionally, by incorporating a flexible polymer, the MOF-808-EDTA-Cu has been successfully processed into a portable miniaturized acid sensor, exhibiting distinct color changes that can be easily monitored by the naked eye and camera sensors. This provides experimental validation as a practical sensor capable of on-site 24-hour monitoring in the real world.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.