First-order quantum breakdown of superconductivity in an amorphous superconductor

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-01-03 DOI:10.1038/s41567-024-02713-8
Thibault Charpentier, David Perconte, Sébastien Léger, Kazi Rafsanjani Amin, Florent Blondelle, Frédéric Gay, Olivier Buisson, Lev Ioffe, Anton Khvalyuk, Igor Poboiko, Mikhail Feigel’man, Nicolas Roch, Benjamin Sacépé
{"title":"First-order quantum breakdown of superconductivity in an amorphous superconductor","authors":"Thibault Charpentier, David Perconte, Sébastien Léger, Kazi Rafsanjani Amin, Florent Blondelle, Frédéric Gay, Olivier Buisson, Lev Ioffe, Anton Khvalyuk, Igor Poboiko, Mikhail Feigel’man, Nicolas Roch, Benjamin Sacépé","doi":"10.1038/s41567-024-02713-8","DOIUrl":null,"url":null,"abstract":"<p>Continuous quantum phase transitions are widely assumed and frequently observed in various systems of quantum particles or spins. Their characteristic trait is a second-order, gradual suppression of the order parameter as the quantum critical point is approached. The localization of Cooper pairs in disordered superconductors and the resulting breakdown of superconductivity have long stood as a prototypical example. Here we show a departure from this paradigm, in which a discontinuous first-order quantum phase transition is tuned by disorder. We measure the plasmon spectrum in superconducting microwave resonators on amorphous superconducting films of indium oxide to provide evidence for a marked jump in both the zero-temperature superfluid stiffness and the transition temperature at the critical disorder. This discontinuous transition sheds light on the role of repulsive interactions between Cooper pairs and the subsequent competition between superconductivity and insulating Cooper-pair glass. Furthermore, we show that the critical temperature of the films no longer relates to the pairing amplitude but aligns with the superfluid stiffness, consistent with the pseudogap regime of preformed Cooper pairs. Our findings raise fundamental new questions about the role of disorder in quantum phase transitions and carry implications for superinductances in quantum circuits.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"17 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02713-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous quantum phase transitions are widely assumed and frequently observed in various systems of quantum particles or spins. Their characteristic trait is a second-order, gradual suppression of the order parameter as the quantum critical point is approached. The localization of Cooper pairs in disordered superconductors and the resulting breakdown of superconductivity have long stood as a prototypical example. Here we show a departure from this paradigm, in which a discontinuous first-order quantum phase transition is tuned by disorder. We measure the plasmon spectrum in superconducting microwave resonators on amorphous superconducting films of indium oxide to provide evidence for a marked jump in both the zero-temperature superfluid stiffness and the transition temperature at the critical disorder. This discontinuous transition sheds light on the role of repulsive interactions between Cooper pairs and the subsequent competition between superconductivity and insulating Cooper-pair glass. Furthermore, we show that the critical temperature of the films no longer relates to the pairing amplitude but aligns with the superfluid stiffness, consistent with the pseudogap regime of preformed Cooper pairs. Our findings raise fundamental new questions about the role of disorder in quantum phase transitions and carry implications for superinductances in quantum circuits.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Morphometry and mechanical instability at the onset of epithelial bladder cancer Topological bands and correlated states in helical trilayer graphene Non-Markovian dynamics of a superconducting qubit in a phononic bandgap A solid-state electrolyte with liquid-like vibrational character Liquid-like dynamics in a solid-state lithium electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1