A Wearable Antifouling Electrochemical Sensor Integrated with an Antimicrobial Microneedle Array for Uric Acid Detection in Interstitial Fluid

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL Analytica Chimica Acta Pub Date : 2025-01-03 DOI:10.1016/j.aca.2025.343610
Mingrui Lv, Lei Wang, Yiting Hou, Xiujuan Qiao, Xiliang Luo
{"title":"A Wearable Antifouling Electrochemical Sensor Integrated with an Antimicrobial Microneedle Array for Uric Acid Detection in Interstitial Fluid","authors":"Mingrui Lv, Lei Wang, Yiting Hou, Xiujuan Qiao, Xiliang Luo","doi":"10.1016/j.aca.2025.343610","DOIUrl":null,"url":null,"abstract":"Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer. The microneedle layer was prepared from polyvinyl alcohol, carboxylated nanocellulose, quaternary ammonium chitosan and carbon nanotubes, and it possessed antimicrobial and mechanical properties necessary for skin penetration, ISF collection and effective transmission to the sensing layer. The sensing layer was prepared from bacterial cellulose, epoxy propyl dimethyl dodecyl ammonium chloride, carbon nanotubes and gold nanoparticles, and it was capable of preventing biofouling and sensing uric acid (UA) in ISF. The wearable MNA based sensor exhibited a linear range of 0.5 μM - 9.6 μM and 9.6 μM - 2.15 for UA detection, with a limit of detection of 0.17 μM. Moreover, it was capable of accurately monitoring UA levels in ISF of mice without significant biofouling, as verified by the ELISA method. This innovative wearable sensor based on the MNA effectively balances the antifouling and antimicrobial functions, offering a reliable strategy for the assay of ISF, and making it a promising tool for personalized and decentralized health monitoring.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"116 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343610","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer. The microneedle layer was prepared from polyvinyl alcohol, carboxylated nanocellulose, quaternary ammonium chitosan and carbon nanotubes, and it possessed antimicrobial and mechanical properties necessary for skin penetration, ISF collection and effective transmission to the sensing layer. The sensing layer was prepared from bacterial cellulose, epoxy propyl dimethyl dodecyl ammonium chloride, carbon nanotubes and gold nanoparticles, and it was capable of preventing biofouling and sensing uric acid (UA) in ISF. The wearable MNA based sensor exhibited a linear range of 0.5 μM - 9.6 μM and 9.6 μM - 2.15 for UA detection, with a limit of detection of 0.17 μM. Moreover, it was capable of accurately monitoring UA levels in ISF of mice without significant biofouling, as verified by the ELISA method. This innovative wearable sensor based on the MNA effectively balances the antifouling and antimicrobial functions, offering a reliable strategy for the assay of ISF, and making it a promising tool for personalized and decentralized health monitoring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
期刊最新文献
Review on activity-based detection of doping substances and growth promotors in biological matrices: do bioassays deserve a place in control programs? Look but don't touch: Non-invasive chemical analysis of organic paint binders - A review. A simple and colorimetric method utilizing cell-free toehold switch sensors for the detection of Chlamydia trachomatis, Ureaplasma urealyticum and Neisseria gonorrhoeae NATURAL DEEP EUTECTIC SOLVENT-BASED LIQUID PHASE MICROEXTRACTION IN A 3D-PRINTED MILLIFLUIDIC FLOW CELL FOR THE ON-LINE DETERMINATION OF THIABENDAZOLE IN JUICE SAMPLES A Wearable Antifouling Electrochemical Sensor Integrated with an Antimicrobial Microneedle Array for Uric Acid Detection in Interstitial Fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1