Smartphone-integrated colorimetric sensor for rapid detection of phenolic compounds based on the peroxidase-mimicking activity of copper/cerium-aspartic acid metal–organic framework
Emmanuel Chigozie Aham, A. Ravikumar, A. Arunjegan, G. Tamilselvan, Zhang Hu, Jiaxuan Xiao, Zhen Zhang, Hongjun Zhao
{"title":"Smartphone-integrated colorimetric sensor for rapid detection of phenolic compounds based on the peroxidase-mimicking activity of copper/cerium-aspartic acid metal–organic framework","authors":"Emmanuel Chigozie Aham, A. Ravikumar, A. Arunjegan, G. Tamilselvan, Zhang Hu, Jiaxuan Xiao, Zhen Zhang, Hongjun Zhao","doi":"10.1007/s00604-024-06873-5","DOIUrl":null,"url":null,"abstract":"<div><p> A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal–organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3′,5,5′-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), resulting in the formation of blue-colored oxidized TMB (ox-TMB). Among the synthesized MOFs, Cu/Ce-Asp nanorods had the highest activity, probably due to the synergistic effect of aspartate and copper coordination, as well as their large surface area, which allows for improved electron transport. Consequently, Cu/Ce-Asp nanorods were utilized for the detection of phenolic compounds under optimized conditions. In the presence of phenolic compounds, the interaction between TMB and H<sub>2</sub>O<sub>2</sub> is inhibited, resulting in various colorimetric responses. This method accurately determined HQ, NP, and CC in a linear range of up to 5 μM, with detection limits of 0.30 μM, 0.76 μM, and 0.50 μM, respectively. To facilitate real-time and portable analysis, smartphone technology was integrated for color detection, eliminating the need for expensive and bulky laboratory-based optical instruments. In addition, the sensor was effectively employed for real water sample analysis, yielding satisfactory recovery outcomes. The proposed sensor offers a rapid, user-friendly, and portable method for detecting phenolic compounds, even at low concentrations. This study not only advances the application of MOF-based nanozymes in environmental monitoring but also expands their potential use in other fields.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06873-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal–organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3′,5,5′-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (H2O2), resulting in the formation of blue-colored oxidized TMB (ox-TMB). Among the synthesized MOFs, Cu/Ce-Asp nanorods had the highest activity, probably due to the synergistic effect of aspartate and copper coordination, as well as their large surface area, which allows for improved electron transport. Consequently, Cu/Ce-Asp nanorods were utilized for the detection of phenolic compounds under optimized conditions. In the presence of phenolic compounds, the interaction between TMB and H2O2 is inhibited, resulting in various colorimetric responses. This method accurately determined HQ, NP, and CC in a linear range of up to 5 μM, with detection limits of 0.30 μM, 0.76 μM, and 0.50 μM, respectively. To facilitate real-time and portable analysis, smartphone technology was integrated for color detection, eliminating the need for expensive and bulky laboratory-based optical instruments. In addition, the sensor was effectively employed for real water sample analysis, yielding satisfactory recovery outcomes. The proposed sensor offers a rapid, user-friendly, and portable method for detecting phenolic compounds, even at low concentrations. This study not only advances the application of MOF-based nanozymes in environmental monitoring but also expands their potential use in other fields.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.