Enhancement of wheat straw pellet quality for bioenergy through additive blending.

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Journal of the Air & Waste Management Association Pub Date : 2025-01-03 DOI:10.1080/10962247.2024.2447480
Bidhan Nath, Guangnan Chen, Les Bowtell, Thong Nguyen-Huy
{"title":"Enhancement of wheat straw pellet quality for bioenergy through additive blending.","authors":"Bidhan Nath, Guangnan Chen, Les Bowtell, Thong Nguyen-Huy","doi":"10.1080/10962247.2024.2447480","DOIUrl":null,"url":null,"abstract":"<p><p>Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study. Pellets were made from seven different combinations using a laboratory-scale pellet mill. The resulting pellets' physical and elemental properties were assessed against ISO 17,225-8 standards. Compared to control pellets, additive blends (T<sub>3</sub>-T<sub>7</sub>) exhibited significant improvements in mechanical durability (80% to 99%), tensile strength (0.36 MPa to 2.09 MPa), and bulk density (244 kg/m<sup>3</sup> to 665.21 kg/m<sup>3</sup>), all meeting ISO standards. AdditionaUF000llylly, these blends maintained low fines content (<2%) and water absorption capacity (<2%, except T<sub>1</sub> and T<sub>5</sub>). Furthermore, fixed carbon content increased from 11.1% to 30.90%, and energy content rose from 17.02 MJ/kg to 20.36 MJ/kg, which showed a significant synergistic effect of blending additives. These findings underscore the potential of wheat straw as a viable biomass source for bioenergy production through pelletization, offering a hopeful outlook for the future of renewable energy. However, further research is necessary to optimize additive mixing ratios for even greater pellet quality.Implications: The study successfully demonstrated that addingspecific materials during wheat straw pelletizing significantly improves thequality of the pellets as a biofuel. Here are the key implications of the statement.Wheat straw is a promising biofuel source: Densification through pelletizing makes wheat straw a viable option for renewable energy production.Additives enhance pellet quality: Sawdust, bentonite clay, corn starch, crude glycerol, and biochar improve the pellets' durability, strength, density, and energy content.Improved pellet properties meet industry standards: The resulting pellets meet ISO standards for mechanical strength, bulk density, and fines content.Synergistic effect of blending: Combining different additives leads to a greater improvement than using them individually.Need for further research: Optimizing the ratios of these additives can potentially create even better biofuel pellets.Overall, the study highlights the potential ofwheat straw pelletizing with specific additives as a sustainable and efficientbiofuel option. There's room for further improvement, but the initial findingsare promising.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Air & Waste Management Association","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10962247.2024.2447480","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study. Pellets were made from seven different combinations using a laboratory-scale pellet mill. The resulting pellets' physical and elemental properties were assessed against ISO 17,225-8 standards. Compared to control pellets, additive blends (T3-T7) exhibited significant improvements in mechanical durability (80% to 99%), tensile strength (0.36 MPa to 2.09 MPa), and bulk density (244 kg/m3 to 665.21 kg/m3), all meeting ISO standards. AdditionaUF000llylly, these blends maintained low fines content (<2%) and water absorption capacity (<2%, except T1 and T5). Furthermore, fixed carbon content increased from 11.1% to 30.90%, and energy content rose from 17.02 MJ/kg to 20.36 MJ/kg, which showed a significant synergistic effect of blending additives. These findings underscore the potential of wheat straw as a viable biomass source for bioenergy production through pelletization, offering a hopeful outlook for the future of renewable energy. However, further research is necessary to optimize additive mixing ratios for even greater pellet quality.Implications: The study successfully demonstrated that addingspecific materials during wheat straw pelletizing significantly improves thequality of the pellets as a biofuel. Here are the key implications of the statement.Wheat straw is a promising biofuel source: Densification through pelletizing makes wheat straw a viable option for renewable energy production.Additives enhance pellet quality: Sawdust, bentonite clay, corn starch, crude glycerol, and biochar improve the pellets' durability, strength, density, and energy content.Improved pellet properties meet industry standards: The resulting pellets meet ISO standards for mechanical strength, bulk density, and fines content.Synergistic effect of blending: Combining different additives leads to a greater improvement than using them individually.Need for further research: Optimizing the ratios of these additives can potentially create even better biofuel pellets.Overall, the study highlights the potential ofwheat straw pelletizing with specific additives as a sustainable and efficientbiofuel option. There's room for further improvement, but the initial findingsare promising.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Air & Waste Management Association
Journal of the Air & Waste Management Association ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
5.00
自引率
3.70%
发文量
95
审稿时长
3 months
期刊介绍: The Journal of the Air & Waste Management Association (J&AWMA) is one of the oldest continuously published, peer-reviewed, technical environmental journals in the world. First published in 1951 under the name Air Repair, J&AWMA is intended to serve those occupationally involved in air pollution control and waste management through the publication of timely and reliable information.
期刊最新文献
Recycling electroplating sludge as an efficient photocatalyst for degradation of ciprofloxacin in aqueous solution. Estimating methane emissions from the waste sector in Southern Ontario using atmospheric measurements. Enhancement of wheat straw pellet quality for bioenergy through additive blending. Incorporation of RLINE into AERMOD: An update and evaluation for mobile source applications. Incorporating meander to account for the impact of low winds in area source modeling; AERMOD as a case study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1