Context-dependent contributions of arbuscular mycorrhizal fungi to host performance under global change factors

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2025-01-04 DOI:10.1016/j.soilbio.2024.109707
Lennel Camuy-Velez, Ditam Chakraborty, Addisyn Young, Sakshi Paudel, Rylie Elvers, Miranda Vanderhyde, Kelly Walter, Chantal Herzog, Samiran Banerjee
{"title":"Context-dependent contributions of arbuscular mycorrhizal fungi to host performance under global change factors","authors":"Lennel Camuy-Velez, Ditam Chakraborty, Addisyn Young, Sakshi Paudel, Rylie Elvers, Miranda Vanderhyde, Kelly Walter, Chantal Herzog, Samiran Banerjee","doi":"10.1016/j.soilbio.2024.109707","DOIUrl":null,"url":null,"abstract":"Arbuscular Mycorrhizal Fungi (AMF) contribute to host performance under stress conditions; however, the type and intensity of stress can shape this contribution. Importantly, the benefits of mycorrhizal symbiosis may also vary with the functional group of host plants. It also remains unclear whether multi-species inocula confer greater stress alleviation to hosts or if single-species inocula are sufficient for host resilience. To address these knowledge gaps, we conducted a global meta-analysis of 252 studies from 36 countries on six continents. Our analysis revealed that mycorrhizal associations enhance the phosphorus and nitrogen content of host biomass under these global change factors. However, contrary to previous meta-analyses that found consistently strong impacts of AMF, we found variable contributions of AMF under heat, cold, drought, salinity, pesticide, and heavy metal pollution. Each stress type has a unique impact on the contribution of AMF to host performance, but this impact also varies with the intensity of stress. Single-species AMF inocula contribute more significantly to host performance under stress compared to multi-species inocula. We also show that the contribution of AMF to plant growth response significantly varies across different plant functional groups, with grasses and legumes significantly benefiting from mycorrhizal associations under global change factors. Overall, this study highlights that the contribution of AMF to host performance under stress is highly context-dependent and influenced by various factors, including the type and intensity of stress, the type of inocula, and the functional groups of host plants. Thus, our meta-analysis can help develop hypotheses that can be tested with mechanistic experiments to gain a better understanding of the synergistic relationship between AMF and host plants in overcoming stress.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"27 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2024.109707","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Arbuscular Mycorrhizal Fungi (AMF) contribute to host performance under stress conditions; however, the type and intensity of stress can shape this contribution. Importantly, the benefits of mycorrhizal symbiosis may also vary with the functional group of host plants. It also remains unclear whether multi-species inocula confer greater stress alleviation to hosts or if single-species inocula are sufficient for host resilience. To address these knowledge gaps, we conducted a global meta-analysis of 252 studies from 36 countries on six continents. Our analysis revealed that mycorrhizal associations enhance the phosphorus and nitrogen content of host biomass under these global change factors. However, contrary to previous meta-analyses that found consistently strong impacts of AMF, we found variable contributions of AMF under heat, cold, drought, salinity, pesticide, and heavy metal pollution. Each stress type has a unique impact on the contribution of AMF to host performance, but this impact also varies with the intensity of stress. Single-species AMF inocula contribute more significantly to host performance under stress compared to multi-species inocula. We also show that the contribution of AMF to plant growth response significantly varies across different plant functional groups, with grasses and legumes significantly benefiting from mycorrhizal associations under global change factors. Overall, this study highlights that the contribution of AMF to host performance under stress is highly context-dependent and influenced by various factors, including the type and intensity of stress, the type of inocula, and the functional groups of host plants. Thus, our meta-analysis can help develop hypotheses that can be tested with mechanistic experiments to gain a better understanding of the synergistic relationship between AMF and host plants in overcoming stress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Context-dependent contributions of arbuscular mycorrhizal fungi to host performance under global change factors Soil pH promoted respiration is stimulated by exoenzyme kinetic properties for a Pinus tabuliformis forest of northern China Heterotrophic nitrification in soils: approaches and mechanisms Multitrophic interactions support belowground carbon sequestration through microbial necromass accumulation in dryland biocrusts Spatiotemporal dynamics of reactive oxygen species in the detritusphere and their critical roles in organic carbon mineralisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1