Linyu Xiao, Jifei Sun, Mingming Wang, Shenxiang Zhang, Yan Xu
{"title":"A Stable Solid-Electrolyte Interphase Constructed by a Nucleophilic Molecule Additive for the Zn Anode with High Utilization and Efficiency","authors":"Linyu Xiao, Jifei Sun, Mingming Wang, Shenxiang Zhang, Yan Xu","doi":"10.1021/acsami.4c17921","DOIUrl":null,"url":null,"abstract":"The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms. The Helmholtz plane (HP) on the Zn anode can be manipulated via the adsorption of MOEA, which excludes free water from the HP due to its strong affinity with metallic Zn. Benefiting from the optimization of the HP, side reactions are greatly suppressed, and a smooth SEI layer can be constructed, enabling the Zn anode to work at high ZURs and high areal capacities. Consequently, the Zn||Cu asymmetric cell exhibits an extremely high cumulative plating capacity of 4 Ah cm<sup>–2</sup> at 10 mA cm<sup>–2</sup> with an average Coulombic efficiency (CE) of 99.8%. The Zn||Zn symmetric cell achieves a maximum ZUR of 80% at an areal capacity of 20 mAh cm<sup>–2</sup> for 130 h, accounting for the boosted reversibility of Zn||V<sub>2</sub>O<sub>5</sub> and Zn||AC full cells under low N/P ratios. Our strategy with nucleophilic electrolyte additives opens a path for developing durable aqueous Zn batteries with high ZURs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17921","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms. The Helmholtz plane (HP) on the Zn anode can be manipulated via the adsorption of MOEA, which excludes free water from the HP due to its strong affinity with metallic Zn. Benefiting from the optimization of the HP, side reactions are greatly suppressed, and a smooth SEI layer can be constructed, enabling the Zn anode to work at high ZURs and high areal capacities. Consequently, the Zn||Cu asymmetric cell exhibits an extremely high cumulative plating capacity of 4 Ah cm–2 at 10 mA cm–2 with an average Coulombic efficiency (CE) of 99.8%. The Zn||Zn symmetric cell achieves a maximum ZUR of 80% at an areal capacity of 20 mAh cm–2 for 130 h, accounting for the boosted reversibility of Zn||V2O5 and Zn||AC full cells under low N/P ratios. Our strategy with nucleophilic electrolyte additives opens a path for developing durable aqueous Zn batteries with high ZURs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.