Apoptotic breast cancer cells after chemotherapy induce pro-tumour extracellular vesicles via LAP-competent macrophages

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Biology Pub Date : 2024-12-28 DOI:10.1016/j.redox.2024.103485
Qi Zhang, Xiaodi Liu, Qiuxia Wei, Shiyu Xiong, Wanrong Luo, Yingshi zhou, Jincheng Cao, Xiaolin Xu, Rongbin Liu, Xinyu Tang, Wenyue Zhang, Baoming Luo
{"title":"Apoptotic breast cancer cells after chemotherapy induce pro-tumour extracellular vesicles via LAP-competent macrophages","authors":"Qi Zhang, Xiaodi Liu, Qiuxia Wei, Shiyu Xiong, Wanrong Luo, Yingshi zhou, Jincheng Cao, Xiaolin Xu, Rongbin Liu, Xinyu Tang, Wenyue Zhang, Baoming Luo","doi":"10.1016/j.redox.2024.103485","DOIUrl":null,"url":null,"abstract":"Chemotherapy is important in the systemic therapy for breast cancer. However, after chemotherapy, the left living tumour cells are more progressive. There is an urgent need to study the underlying mechanism which is still unclear to further improve the therapeutic efficacy of chemotherapy in breast cancer. Here we find a pro-tumour effect of the apoptotic cells induced by the chemotherapy, which is mediated by a new subset of macrophages undergoing LC3-associated phagocytosis (LAP). By transferring exosomal S100A11 into the living tumour cells after chemotherapy, the macrophage exhibits a more pro-tumour phenotype than classic M2-type macrophages. Moreover, S100A11 binds to IFITM3, inducing Akt phosphorylation of living tumour cells after chemotherapy, which promotes tumour progression. Of note, Akt inhibitor can enhance the therapeutic effcicay of chemotherapy in breast cancer. This study provides a novel mechanistic link between tumour-associated macrophages and breast cancer, uncovering Akt as a potential therapeutic target to improve chemotherapy efficacy.","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"20 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.redox.2024.103485","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy is important in the systemic therapy for breast cancer. However, after chemotherapy, the left living tumour cells are more progressive. There is an urgent need to study the underlying mechanism which is still unclear to further improve the therapeutic efficacy of chemotherapy in breast cancer. Here we find a pro-tumour effect of the apoptotic cells induced by the chemotherapy, which is mediated by a new subset of macrophages undergoing LC3-associated phagocytosis (LAP). By transferring exosomal S100A11 into the living tumour cells after chemotherapy, the macrophage exhibits a more pro-tumour phenotype than classic M2-type macrophages. Moreover, S100A11 binds to IFITM3, inducing Akt phosphorylation of living tumour cells after chemotherapy, which promotes tumour progression. Of note, Akt inhibitor can enhance the therapeutic effcicay of chemotherapy in breast cancer. This study provides a novel mechanistic link between tumour-associated macrophages and breast cancer, uncovering Akt as a potential therapeutic target to improve chemotherapy efficacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
期刊最新文献
TRIOL attenuates intracerebral hemorrhage injury by bidirectionally modulating microglia- and neuron-mediated hematoma clearance Apoptotic breast cancer cells after chemotherapy induce pro-tumour extracellular vesicles via LAP-competent macrophages ASB1 engages with ELOB to facilitate SQOR ubiquitination and H2S homeostasis during spermiogenesis Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis. Therapeutic potential of monomethyl fumarate and aluminum ion combination in alleviating inflammation and oxidative stress in psoriasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1