Improving groundwater quality predictions in semi-arid regions using ensemble learning models.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2025-01-04 DOI:10.1007/s11356-024-35874-3
Maedeh Mahmoudi, Amin Mahdavi-Meymand, Ammar AlDallal, Mohammad Zounemat-Kermani
{"title":"Improving groundwater quality predictions in semi-arid regions using ensemble learning models.","authors":"Maedeh Mahmoudi, Amin Mahdavi-Meymand, Ammar AlDallal, Mohammad Zounemat-Kermani","doi":"10.1007/s11356-024-35874-3","DOIUrl":null,"url":null,"abstract":"<p><p>Groundwater resources constitute one of the primary sources of freshwater in semi-arid and arid climates. Monitoring the groundwater quality is an essential component of environmental management. In this study, a comprehensive comparison was conducted to analyze the performance of nine ensembles and regular machine learning (ML) methods in predicting two water quality parameters including total dissolved solids (TDS) and pH, in an area with semi-arid climate conditions. The study area under consideration is an aquifer located in the Sirjan plain, Kerman, Iran. The developed models include standard multilayer perceptron neural network (MLPNN), classification and regression trees (CART), Chi-square automatic interaction detection (CHAID), and their ensemble versions in bagging (BG) and boosting (BT) ensemble structures. The analysis revealed that standard MLs yield comparable results in predicting TDS. The MLPNN, exhibiting a standard root mean square error (SRMSE) of 0.085, demonstrated superior accuracy in predicting TDS when contrasted with CART and CHAID models. Predicting pH poses a greater challenge for the models. Ensemble techniques significantly enhanced the accuracy of regular models. On average, the bagging and boosting techniques resulted in a 22.68% improvement in the accuracy of regular models, which represents a statistically significant enhancement. The boosting method, with an average SRMSE of 0.0602, is more accurate than bagging. Based on the results, the CHAID-BT with SRMSE of 0.0790 and CHAID-BG with SRMSE of 0.0330 are ranked the most accurate models for predicting TDS and pH, respectively. The performance of ensemble techniques in predicting TDS is more remarkable. In practical implementation, ensemble techniques can be considered an alternative method with high accuracy for sustainable water resources management in semi-arid regions, helping to address water shortages, climate change, water pollution, etc.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35874-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater resources constitute one of the primary sources of freshwater in semi-arid and arid climates. Monitoring the groundwater quality is an essential component of environmental management. In this study, a comprehensive comparison was conducted to analyze the performance of nine ensembles and regular machine learning (ML) methods in predicting two water quality parameters including total dissolved solids (TDS) and pH, in an area with semi-arid climate conditions. The study area under consideration is an aquifer located in the Sirjan plain, Kerman, Iran. The developed models include standard multilayer perceptron neural network (MLPNN), classification and regression trees (CART), Chi-square automatic interaction detection (CHAID), and their ensemble versions in bagging (BG) and boosting (BT) ensemble structures. The analysis revealed that standard MLs yield comparable results in predicting TDS. The MLPNN, exhibiting a standard root mean square error (SRMSE) of 0.085, demonstrated superior accuracy in predicting TDS when contrasted with CART and CHAID models. Predicting pH poses a greater challenge for the models. Ensemble techniques significantly enhanced the accuracy of regular models. On average, the bagging and boosting techniques resulted in a 22.68% improvement in the accuracy of regular models, which represents a statistically significant enhancement. The boosting method, with an average SRMSE of 0.0602, is more accurate than bagging. Based on the results, the CHAID-BT with SRMSE of 0.0790 and CHAID-BG with SRMSE of 0.0330 are ranked the most accurate models for predicting TDS and pH, respectively. The performance of ensemble techniques in predicting TDS is more remarkable. In practical implementation, ensemble techniques can be considered an alternative method with high accuracy for sustainable water resources management in semi-arid regions, helping to address water shortages, climate change, water pollution, etc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Assessment of dynamic characteristics of bio-cemented sand considering microbially induced calcite precipitation treatment. Assessment of industrial effluent discharges contributing to Ganga water pollution through a multivariate statistical framework: investigating the context of Indian industries. Degradation of ciprofloxacin using CoFe2O4@three-dimensional TiO2@graphene aerogels composite: kinetic, reusability, mineralization, degradation pathway, and toxicity assessment. Understanding fish assemblage structure using enviro assessment techniques in a Northwestern Himalayan reservoir of Beas River basin in Himachal Pradesh (H.P.), India. Evaluation of mechanical responses of asphalt mixtures incorporating plastic waste as additives by different compaction efforts and mixing temperatures for a sustainable mixture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1