Assessment of industrial effluent discharges contributing to Ganga water pollution through a multivariate statistical framework: investigating the context of Indian industries.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2025-01-06 DOI:10.1007/s11356-024-35823-0
Rupanjali Singh, Anuj Singh, Chandrajit Balomajumder, Ajit Kumar Vidyarthi
{"title":"Assessment of industrial effluent discharges contributing to Ganga water pollution through a multivariate statistical framework: investigating the context of Indian industries.","authors":"Rupanjali Singh, Anuj Singh, Chandrajit Balomajumder, Ajit Kumar Vidyarthi","doi":"10.1007/s11356-024-35823-0","DOIUrl":null,"url":null,"abstract":"<p><p>The swift industrial expansion has posed significant environmental challenges, particularly in the context of water pollution. Industrial effluents consist of substantial amounts of harmful pollutants that enter the main rivers via various tapped and untapped drains/local water streams, causing alterations in their physical and chemical properties. This study investigated 153 grossly polluting industries (GPIs) that were identified to release their effluents into the main rivers through different drains within multiple sectors in the industrial zone of four northern states of India in 2023. Physicochemical analysis, multivariate statistical analyses, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), and spatial analysis were conducted to evaluate the impact of these discharges. The results show significant variations in mean concentrations, such as pH (6.55-8.42), biochemical oxygen demand (6-707.83 mg/l), chemical oxygen demand (20-1504.25 mg/l), total suspended solids (5-417 mg/l), total dissolved solids (560-9908 mg/l), and chloride (101-4360.7 mg/l) across all the sectors. PCA results indicated that two principal loadings significantly influence the wastewater chemistry. PC1 accounts for 49.85% of the variance, reflecting organic and nutrient pollution, while PC2 contributes 19.128% of the total variance, reflecting the dominance of chloride, dissolved solids, and chemical oxygen demand. HCA classified the GPIs into six clusters for their substantial roles in releasing highly polluted (C3, C4, C5, and C6), moderately polluted (C2), and less polluted (C1) wastewater. Overall findings reveal the alarming magnitude of industrial wastewater discharge into the rivers, emphasizing the urgent need for improved regulatory frameworks, stricter enforcement of environmental laws, and greater corporate responsibility.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35823-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The swift industrial expansion has posed significant environmental challenges, particularly in the context of water pollution. Industrial effluents consist of substantial amounts of harmful pollutants that enter the main rivers via various tapped and untapped drains/local water streams, causing alterations in their physical and chemical properties. This study investigated 153 grossly polluting industries (GPIs) that were identified to release their effluents into the main rivers through different drains within multiple sectors in the industrial zone of four northern states of India in 2023. Physicochemical analysis, multivariate statistical analyses, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), and spatial analysis were conducted to evaluate the impact of these discharges. The results show significant variations in mean concentrations, such as pH (6.55-8.42), biochemical oxygen demand (6-707.83 mg/l), chemical oxygen demand (20-1504.25 mg/l), total suspended solids (5-417 mg/l), total dissolved solids (560-9908 mg/l), and chloride (101-4360.7 mg/l) across all the sectors. PCA results indicated that two principal loadings significantly influence the wastewater chemistry. PC1 accounts for 49.85% of the variance, reflecting organic and nutrient pollution, while PC2 contributes 19.128% of the total variance, reflecting the dominance of chloride, dissolved solids, and chemical oxygen demand. HCA classified the GPIs into six clusters for their substantial roles in releasing highly polluted (C3, C4, C5, and C6), moderately polluted (C2), and less polluted (C1) wastewater. Overall findings reveal the alarming magnitude of industrial wastewater discharge into the rivers, emphasizing the urgent need for improved regulatory frameworks, stricter enforcement of environmental laws, and greater corporate responsibility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Assessment of dynamic characteristics of bio-cemented sand considering microbially induced calcite precipitation treatment. Assessment of industrial effluent discharges contributing to Ganga water pollution through a multivariate statistical framework: investigating the context of Indian industries. Degradation of ciprofloxacin using CoFe2O4@three-dimensional TiO2@graphene aerogels composite: kinetic, reusability, mineralization, degradation pathway, and toxicity assessment. Understanding fish assemblage structure using enviro assessment techniques in a Northwestern Himalayan reservoir of Beas River basin in Himachal Pradesh (H.P.), India. Evaluation of mechanical responses of asphalt mixtures incorporating plastic waste as additives by different compaction efforts and mixing temperatures for a sustainable mixture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1