Degradation of ciprofloxacin using CoFe2O4@three-dimensional TiO2@graphene aerogels composite: kinetic, reusability, mineralization, degradation pathway, and toxicity assessment.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2025-01-06 DOI:10.1007/s11356-024-35787-1
Fatemeh Zisti, Irwanjot Kaur, Sameer A Awad, Nizomiddin Juraev, Dmitry Olegovich Bokov, Hamad AlMohamadi, Carlos Rodriguez-Benites, Merwa Alhadrawi, Salah Hassan Zain Al-Abdeen, Davoud Balarak
{"title":"Degradation of ciprofloxacin using CoFe<sub>2</sub>O<sub>4</sub>@three-dimensional TiO<sub>2</sub>@graphene aerogels composite: kinetic, reusability, mineralization, degradation pathway, and toxicity assessment.","authors":"Fatemeh Zisti, Irwanjot Kaur, Sameer A Awad, Nizomiddin Juraev, Dmitry Olegovich Bokov, Hamad AlMohamadi, Carlos Rodriguez-Benites, Merwa Alhadrawi, Salah Hassan Zain Al-Abdeen, Davoud Balarak","doi":"10.1007/s11356-024-35787-1","DOIUrl":null,"url":null,"abstract":"<p><p>An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFe<sub>2</sub>O<sub>4</sub>@3D-TiO<sub>2</sub>@GA, synthesized by doping CoFe<sub>2</sub>O<sub>4</sub>@three-dimensional-TiO<sub>2</sub> into a hierarchical porous graphene aerogel. Optimal conditions for achieving complete removal of CIP involved a reaction time of 60 min, a catalyst dose of 0.6 g/L, an initial CIP concentration of 25 mg/L, and a solution pH range of 3-5. The reusability of CoFe<sub>2</sub>O<sub>4</sub>@3D-TiO<sub>2</sub>@GA was observed to remain high even after four consecutive cycles, as the CIP degradation only slightly decreased from 94.3 to 87.1%. Following a 2-h photocatalytic degradation process, the intermediate products within the CIP solution no longer posed a threat to E. coli. The TOC analysis confirmed that CIP achieved 86% total mineralization. In the raw sewage, the BOD<sub>5</sub>/COD and BOD<sub>5</sub>/TOC ratios were 0.774 and 0.232, respectively. However, after a 120-min photocatalytic reaction, these ratios increased to 1.38 and 0.754, respectively. These findings suggest that non-biological sewage can be successfully transformed into biodegradable effluent through photocatalytic degradation. The photocatalytic process has a reaction rate coefficient that is 8.7 to 20.7 times higher than the adsorption process, depending on the concentration. The half-life constant is 117.4 min for the optimal concentration of 10 mg/L for the adsorption process, while for the photocatalytic process, it is 6.24 min. The research has highlighted the importance of integrating adsorption and photocatalysis, whereby primary reactive oxidative species, including superoxide and hydroxyl radicals, were identified. The study presents a pioneering approach for producing CoFe<sub>2</sub>O<sub>4</sub>@3D-TiO<sub>2</sub>@GA, which has promising potential for environmental applications utilizing visible light.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35787-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFe2O4@3D-TiO2@GA, synthesized by doping CoFe2O4@three-dimensional-TiO2 into a hierarchical porous graphene aerogel. Optimal conditions for achieving complete removal of CIP involved a reaction time of 60 min, a catalyst dose of 0.6 g/L, an initial CIP concentration of 25 mg/L, and a solution pH range of 3-5. The reusability of CoFe2O4@3D-TiO2@GA was observed to remain high even after four consecutive cycles, as the CIP degradation only slightly decreased from 94.3 to 87.1%. Following a 2-h photocatalytic degradation process, the intermediate products within the CIP solution no longer posed a threat to E. coli. The TOC analysis confirmed that CIP achieved 86% total mineralization. In the raw sewage, the BOD5/COD and BOD5/TOC ratios were 0.774 and 0.232, respectively. However, after a 120-min photocatalytic reaction, these ratios increased to 1.38 and 0.754, respectively. These findings suggest that non-biological sewage can be successfully transformed into biodegradable effluent through photocatalytic degradation. The photocatalytic process has a reaction rate coefficient that is 8.7 to 20.7 times higher than the adsorption process, depending on the concentration. The half-life constant is 117.4 min for the optimal concentration of 10 mg/L for the adsorption process, while for the photocatalytic process, it is 6.24 min. The research has highlighted the importance of integrating adsorption and photocatalysis, whereby primary reactive oxidative species, including superoxide and hydroxyl radicals, were identified. The study presents a pioneering approach for producing CoFe2O4@3D-TiO2@GA, which has promising potential for environmental applications utilizing visible light.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Assessment of dynamic characteristics of bio-cemented sand considering microbially induced calcite precipitation treatment. Assessment of industrial effluent discharges contributing to Ganga water pollution through a multivariate statistical framework: investigating the context of Indian industries. Degradation of ciprofloxacin using CoFe2O4@three-dimensional TiO2@graphene aerogels composite: kinetic, reusability, mineralization, degradation pathway, and toxicity assessment. Understanding fish assemblage structure using enviro assessment techniques in a Northwestern Himalayan reservoir of Beas River basin in Himachal Pradesh (H.P.), India. Evaluation of mechanical responses of asphalt mixtures incorporating plastic waste as additives by different compaction efforts and mixing temperatures for a sustainable mixture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1