Efficient Narrow Bandgap Pb‐Sn Perovskite Solar Cells Through Self‐Assembled Hole Transport Layer with Ionic Head

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-01-06 DOI:10.1002/aenm.202404617
Shynggys Zhumagali, Chongwen Li, Mantas Marcinskas, Pia Dally, Yuan Liu, Esma Ugur, Christopher E. Petoukhoff, Mohammed Ghadiyali, Adi Prasetio, Marco Marengo, Anil R. Pininti, Randi Azmi, Udo Schwingenschlögl, Frédéric Laquai, Vytautas Getautis, Tadas Malinauskas, Erkan Aydin, Edward H. Sargent, Stefaan De Wolf
{"title":"Efficient Narrow Bandgap Pb‐Sn Perovskite Solar Cells Through Self‐Assembled Hole Transport Layer with Ionic Head","authors":"Shynggys Zhumagali, Chongwen Li, Mantas Marcinskas, Pia Dally, Yuan Liu, Esma Ugur, Christopher E. Petoukhoff, Mohammed Ghadiyali, Adi Prasetio, Marco Marengo, Anil R. Pininti, Randi Azmi, Udo Schwingenschlögl, Frédéric Laquai, Vytautas Getautis, Tadas Malinauskas, Erkan Aydin, Edward H. Sargent, Stefaan De Wolf","doi":"10.1002/aenm.202404617","DOIUrl":null,"url":null,"abstract":"Single‐junction perovskite solar cells (PSCs) have achieved certified power conversion efficiencies (PCEs) of 26.1%, which approaches their practical performance limit. Multi‐junction tandem solar cells can unlock even higher PCEs, where narrow‐bandgap lead‐tin (Pb‐Sn) perovskites, with a bandgap of 1.21–1.25 eV, are well‐suited as the bottom photo absorber in all‐perovskite tandems. Bulk engineering and surface treatments of Pb‐Sn perovskites using Lewis base molecules have been shown to reduce the defect density within the bulk and at the electron transport layer interface, thereby improving device performance. Nevertheless, the buried interface between Pb‐Sn perovskite and the commonly used hole transport layer PEDOT:PSS remains problematic due to the reactivity of polystyrene sulfonate (PSS) with Sn<jats:sup>2+</jats:sup> ions, which negatively impacts device performance. To overcome this issue, a novel carbazole‐based self‐assembled monolayer, BrNH<jats:sub>3</jats:sub>‐4PACz is synthesized, that provides a suitable dipole moment at the indium‐tin oxide interface for efficient hole extraction and features an ionic ammonium head group that passivates the perovskite at the buried interface. This dual functionality enabled the fabrication of a p‐i‐n architecture Pb‐Sn PSC with a bandgap of 1.24 eV, achieving a champion PCE of 23% and an open‐circuit voltage of 0.88 V, which ranks among the highest reported values in the literature.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"20 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404617","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single‐junction perovskite solar cells (PSCs) have achieved certified power conversion efficiencies (PCEs) of 26.1%, which approaches their practical performance limit. Multi‐junction tandem solar cells can unlock even higher PCEs, where narrow‐bandgap lead‐tin (Pb‐Sn) perovskites, with a bandgap of 1.21–1.25 eV, are well‐suited as the bottom photo absorber in all‐perovskite tandems. Bulk engineering and surface treatments of Pb‐Sn perovskites using Lewis base molecules have been shown to reduce the defect density within the bulk and at the electron transport layer interface, thereby improving device performance. Nevertheless, the buried interface between Pb‐Sn perovskite and the commonly used hole transport layer PEDOT:PSS remains problematic due to the reactivity of polystyrene sulfonate (PSS) with Sn2+ ions, which negatively impacts device performance. To overcome this issue, a novel carbazole‐based self‐assembled monolayer, BrNH3‐4PACz is synthesized, that provides a suitable dipole moment at the indium‐tin oxide interface for efficient hole extraction and features an ionic ammonium head group that passivates the perovskite at the buried interface. This dual functionality enabled the fabrication of a p‐i‐n architecture Pb‐Sn PSC with a bandgap of 1.24 eV, achieving a champion PCE of 23% and an open‐circuit voltage of 0.88 V, which ranks among the highest reported values in the literature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用离子头自组装空穴传输层制备高效窄带隙Pb - Sn钙钛矿太阳能电池
单结钙钛矿太阳能电池(PSCs)已经达到了26.1%的认证功率转换效率(pce),接近其实际性能极限。多结串联太阳能电池可以释放更高的pce,其中窄带隙铅锡(Pb - Sn)钙钛矿具有1.21-1.25 eV的带隙,非常适合作为全钙钛矿串联的底部光吸收剂。使用Lewis碱分子对Pb - Sn钙钛矿进行体工程和表面处理,可以降低体内和电子传输层界面处的缺陷密度,从而提高器件性能。然而,由于聚苯乙烯磺酸盐(PSS)与Sn2+离子的反应性,Pb - Sn钙钛矿与常用的空穴传输层PEDOT:PSS之间的埋藏界面仍然存在问题,这对器件性能产生了负面影响。为了克服这一问题,我们合成了一种新的基于咔唑的自组装单层BrNH3 - 4PACz,它在铟锡氧化物界面上提供了合适的偶极矩,可以有效地提取空穴,并且具有离子铵头基团,可以钝化埋藏界面上的钙钛矿。这种双重功能使得p - i - n结构的Pb - Sn PSC具有1.24 eV的带隙,实现了23%的冠军PCE和0.88 V的开路电压,这是文献中报道的最高值之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Fine-Tuning Li-Ion Solvation Structure by Enhanced Solvent-Diluent Interactions for Long-Cycling Lithium Metal Batteries How Do Organic Batteries Work? Theoretical and Design Principles of Electrode Materials for All-Organic Batteries Dual Interface Passivation With Multi-Site Regulation Toward Efficient and Stable Inverted Perovskite Solar Cells Tunable Ferroelectric Polarization in BaTiO3 Coupled with Zn0.5Cd0.5S Quantum Dots for Efficient Solar-Driven Hydrogen Evolution Chemical Bond Management of FA-Based Mixed Halide Perovskites for Stable and High-Efficiency Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1