Liquid-like dynamics in a solid-state lithium electrolyte

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-01-06 DOI:10.1038/s41567-024-02707-6
Jingxuan Ding, Mayanak K. Gupta, Carolin Rosenbach, Hung-Min Lin, Naresh C. Osti, Douglas L. Abernathy, Wolfgang G. Zeier, Olivier Delaire
{"title":"Liquid-like dynamics in a solid-state lithium electrolyte","authors":"Jingxuan Ding, Mayanak K. Gupta, Carolin Rosenbach, Hung-Min Lin, Naresh C. Osti, Douglas L. Abernathy, Wolfgang G. Zeier, Olivier Delaire","doi":"10.1038/s41567-024-02707-6","DOIUrl":null,"url":null,"abstract":"Superionic materials represent a regime intermediate between the crystalline and liquid states of matter. Despite the considerable interest in potential applications for solid-state batteries or thermoelectric devices, it remains unclear whether the fast ionic diffusion observed in superionic materials reflects liquid-like dynamics or whether the hops of mobile ions are inherently coupled to more conventional lattice phonons. Here we reveal a crossover from crystalline vibrations to relaxational dynamics of ionic diffusion in the superionic compound Li6PS5Cl, a candidate solid-state electrolyte. By combining inelastic and quasi-elastic neutron-scattering measurements with first-principles-based machine-learned molecular dynamics simulations, we found that the vibrational density of states in the superionic state strongly deviates from the quadratic behaviour expected from the Debye law of lattice dynamics. The superionic dynamics emerges from overdamped phonon quasiparticles to give rise to a linear density of states characteristic of instantaneous normal modes in the liquid state. Further, we showed that the coupling of lattice phonons with a dynamic breathing of the Li+ diffusion bottleneck enables an order-of-magnitude increase in diffusivity. Thus, our results shed insights into superionics for future energy storage and conversion technologies. Understanding the mechanism of ionic diffusion in superionic materials is crucial for their potential applications in solid-state batteries. Now liquid-like dynamics that break the Debye law of lattice dynamics have been demonstrated in a lithium electrolyte.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"118-125"},"PeriodicalIF":17.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02707-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superionic materials represent a regime intermediate between the crystalline and liquid states of matter. Despite the considerable interest in potential applications for solid-state batteries or thermoelectric devices, it remains unclear whether the fast ionic diffusion observed in superionic materials reflects liquid-like dynamics or whether the hops of mobile ions are inherently coupled to more conventional lattice phonons. Here we reveal a crossover from crystalline vibrations to relaxational dynamics of ionic diffusion in the superionic compound Li6PS5Cl, a candidate solid-state electrolyte. By combining inelastic and quasi-elastic neutron-scattering measurements with first-principles-based machine-learned molecular dynamics simulations, we found that the vibrational density of states in the superionic state strongly deviates from the quadratic behaviour expected from the Debye law of lattice dynamics. The superionic dynamics emerges from overdamped phonon quasiparticles to give rise to a linear density of states characteristic of instantaneous normal modes in the liquid state. Further, we showed that the coupling of lattice phonons with a dynamic breathing of the Li+ diffusion bottleneck enables an order-of-magnitude increase in diffusivity. Thus, our results shed insights into superionics for future energy storage and conversion technologies. Understanding the mechanism of ionic diffusion in superionic materials is crucial for their potential applications in solid-state batteries. Now liquid-like dynamics that break the Debye law of lattice dynamics have been demonstrated in a lithium electrolyte.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固态锂电解质的类液体动力学
超离子材料代表了物质的结晶和液态之间的一种状态。尽管人们对固态电池或热电器件的潜在应用非常感兴趣,但尚不清楚在超离子材料中观察到的快速离子扩散是否反映了类液体动力学,或者移动离子的跳跃是否固有地与更传统的晶格声子耦合。在这里,我们揭示了超离子化合物Li6PS5Cl(一种候选固态电解质)中从晶体振动到离子扩散弛豫动力学的交叉。通过将非弹性和准弹性中子散射测量与基于第一性原理的机器学习分子动力学模拟相结合,我们发现超电子态中态的振动密度严重偏离了晶格动力学德拜定律所期望的二次行为。超离子动力学从过阻尼声子准粒子中产生,在液态中产生具有瞬时正态模式特征的线性态密度。此外,我们表明晶格声子与Li+扩散瓶颈的动态呼吸的耦合使扩散率增加了一个数量级。因此,我们的研究结果为未来的能量存储和转换技术提供了超电子学的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Topology shapes dynamics of higher-order networks Universal dissipative dynamics in strongly correlated quantum gases Author Correction: Magnetic flux trapping in hydrogen-rich high-temperature superconductors Local minima in quantum systems Wideband electric field quantum sensing via motional Raman transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1