A mass transfer technology for high-density two-dimensional device integration

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Nature Electronics Pub Date : 2025-01-06 DOI:10.1038/s41928-024-01306-w
Liwei Liu, Zhenggang Cai, Siwei Xue, Hai Huang, Sifan Chen, Saifei Gou, Zhejia Zhang, Yiming Guo, Yusheng Yao, Wenzhong Bao, Peng Zhou
{"title":"A mass transfer technology for high-density two-dimensional device integration","authors":"Liwei Liu, Zhenggang Cai, Siwei Xue, Hai Huang, Sifan Chen, Saifei Gou, Zhejia Zhang, Yiming Guo, Yusheng Yao, Wenzhong Bao, Peng Zhou","doi":"10.1038/s41928-024-01306-w","DOIUrl":null,"url":null,"abstract":"<p>The large-area transfer of two-dimensional (2D) materials from their growth substrate is crucial for electronic device integration. However, it is easy to damage sub-1-nm thick materials, and existing transfer methods typically involve a trade-off in terms of lateral size, quality and accuracy. Here we report a mass transfer printing technology that uses a polydimethylsiloxane stamp patterned with precisely arranged micro-posts to gently transfer wafer-level 2D arrays and to stack van der Waals heterostructure arrays. After the stamp is brought into contact with the 2D material, an ethanol–water solution is added, which penetrates the 2D material–growth substrate interface between the non-contact regions of the stamp and causes the film to delaminate. We use the approach to transfer a 2-inch (~5 cm) monolayer molybdenum disulfide film containing more than 1,000,000 arrays with lateral dimensions of 20 × 20 µm<sup>2</sup>, a density of 62,500 arrays per cm<sup>2</sup> and a yield of 99% in a single operation. Integrated 2D transistors with different device architectures created with the technology show a device yield of around 97.9% (back gate) and nearly damage-free electrical properties (top and bottom gate). We also develop a capillary force-assisted transfer model to explain the rapid transfer mechanism.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"6 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01306-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The large-area transfer of two-dimensional (2D) materials from their growth substrate is crucial for electronic device integration. However, it is easy to damage sub-1-nm thick materials, and existing transfer methods typically involve a trade-off in terms of lateral size, quality and accuracy. Here we report a mass transfer printing technology that uses a polydimethylsiloxane stamp patterned with precisely arranged micro-posts to gently transfer wafer-level 2D arrays and to stack van der Waals heterostructure arrays. After the stamp is brought into contact with the 2D material, an ethanol–water solution is added, which penetrates the 2D material–growth substrate interface between the non-contact regions of the stamp and causes the film to delaminate. We use the approach to transfer a 2-inch (~5 cm) monolayer molybdenum disulfide film containing more than 1,000,000 arrays with lateral dimensions of 20 × 20 µm2, a density of 62,500 arrays per cm2 and a yield of 99% in a single operation. Integrated 2D transistors with different device architectures created with the technology show a device yield of around 97.9% (back gate) and nearly damage-free electrical properties (top and bottom gate). We also develop a capillary force-assisted transfer model to explain the rapid transfer mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
期刊最新文献
A real-time, scalable, fast and resource-efficient decoder for a quantum computer A programmable metasurface antenna that approaches the wireless information mapping limit Neuromorphic weighted sums with magnetic skyrmions A mass transfer technology for high-density two-dimensional device integration Rapid cryogenic characterization of 1,024 integrated silicon quantum dot devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1