Yanhui Cao, Junhao Zeng, Xuerong Zheng, Yuan Liu, Junda Lu, Jinfeng Zhang, Yang Wang, Yida Deng, Wenbin Hu
{"title":"Regulating d-orbital spin state of Fe in single-atom electrocatalyst for boosting oxygen reduction activity in neutral electrolyte","authors":"Yanhui Cao, Junhao Zeng, Xuerong Zheng, Yuan Liu, Junda Lu, Jinfeng Zhang, Yang Wang, Yida Deng, Wenbin Hu","doi":"10.1016/j.jmst.2024.11.054","DOIUrl":null,"url":null,"abstract":"Oxygen reduction reaction (ORR) in neutral electrolyte is urgently needed in various areas, such as metal-air batteries. However, the N-coordinated transition-metal single-atom electrocatalysts confront sluggish catalytic kinetics due to the inappropriate electronic structure and the as-resulted unreasonable adsorption strength towards oxygen-containing intermediates. In this work, we develop a strategy to tune the Fe d-orbital spin state by introducing inert Si atom into the first coordination sphere of Fe-N<sub>4</sub> moieties. The experimental and theoretical results suggest that Si atom generates the coordination field distortion of Fe and induces the Fe d-orbital spin state transforming from low to medium spin state. The optimized spin-electron filled state (t<sub>2g</sub><sup>4</sup>e<sub>g</sub><sup>1</sup>) of Fe sites weakens the adsorption strength to intermediates and reduces the energy barrier of *OH desorption. Consequently, Fe-Si/NC catalyst exhibits superior ORR performance compared with that of Fe-NC and commercial Pt/C, showing a more positive half-wave potential of 0.751 V (vs. RHE) in 0.1 mol/L phosphate buffered saline. In addition, Fe-Si/NC-based neutral zinc-air batteries show a maximum power density of 108.9 mW cm<sup>−2</sup> and long-term stability for more than 200 h. This work represents the possibility of constructing distorted coordination configurations of single-atom catalysts to modulate electronic structure and enhance ORR activity in neutral electrolyte.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"117 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.054","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxygen reduction reaction (ORR) in neutral electrolyte is urgently needed in various areas, such as metal-air batteries. However, the N-coordinated transition-metal single-atom electrocatalysts confront sluggish catalytic kinetics due to the inappropriate electronic structure and the as-resulted unreasonable adsorption strength towards oxygen-containing intermediates. In this work, we develop a strategy to tune the Fe d-orbital spin state by introducing inert Si atom into the first coordination sphere of Fe-N4 moieties. The experimental and theoretical results suggest that Si atom generates the coordination field distortion of Fe and induces the Fe d-orbital spin state transforming from low to medium spin state. The optimized spin-electron filled state (t2g4eg1) of Fe sites weakens the adsorption strength to intermediates and reduces the energy barrier of *OH desorption. Consequently, Fe-Si/NC catalyst exhibits superior ORR performance compared with that of Fe-NC and commercial Pt/C, showing a more positive half-wave potential of 0.751 V (vs. RHE) in 0.1 mol/L phosphate buffered saline. In addition, Fe-Si/NC-based neutral zinc-air batteries show a maximum power density of 108.9 mW cm−2 and long-term stability for more than 200 h. This work represents the possibility of constructing distorted coordination configurations of single-atom catalysts to modulate electronic structure and enhance ORR activity in neutral electrolyte.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.