Temperature-dependent deformation behavior of dual-phase medium-entropy alloy: In-situ neutron diffraction study

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-07 DOI:10.1016/j.jmst.2024.11.057
Gang Hee Gu, Sang Guk Jeong, Yoon-Uk Heo, Hyojeong Ha, Soung Yeoul Ahn, Ji Yeong Lee, Jungwan Lee, Stefanus Harjo, Wu Gong, Jungwook Cho, Hyoung Seop Kim
{"title":"Temperature-dependent deformation behavior of dual-phase medium-entropy alloy: In-situ neutron diffraction study","authors":"Gang Hee Gu, Sang Guk Jeong, Yoon-Uk Heo, Hyojeong Ha, Soung Yeoul Ahn, Ji Yeong Lee, Jungwan Lee, Stefanus Harjo, Wu Gong, Jungwook Cho, Hyoung Seop Kim","doi":"10.1016/j.jmst.2024.11.057","DOIUrl":null,"url":null,"abstract":"Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties over a broad temperature range from cryogenic temperatures (CTs) to room temperature (RT). Specifically, while the deformation mechanism is dominated solely by dislocation slip at RT, the reduction in stacking fault energy (SFE) at CTs leads to enhanced strain hardening with deformation twinning. This study employs in-situ neutron diffraction to reveal the temperature-dependent deformation behavior of the FCC/body-centered cubic (BCC) dual-phase (DP) Al<sub>7</sub>(CoNiV)<sub>93</sub> medium-entropy alloy (MEA), which possesses a matrix exhibiting deformation behavior analogous to that of representative equi-atomic MPEAs. Alongside the increased lattice friction stress associated with reduced temperature as a thermal component, deformation twinning at liquid nitrogen temperature (LNT) facilitates dislocation activity in the FCC matrix, leading to additional strain hardening induced by the dynamic Hall–Petch effect. This would give the appearance that the improved strengthening/hardening behaviors at LNT, compared to RT, are primarily attributable to the FCC phase. In contrast, the BCC precipitates are governed solely by dislocation slip for plastic deformation at both 77 K and 298 K, exhibiting a similar trend in dislocation density evolution. Nevertheless, empirical and quantitative findings indicate that the intrinsically high Peierls–Nabarro barriers in the BCC precipitates exhibit pronounced temperature-dependent lattice friction stress, suggesting that the BCC precipitates play a more significant role in the temperature-dependent strengthening/hardening behaviors for the DP-MEA. This study provides a comprehensive understanding of deformation behavior by thoroughly analyzing temperature-dependent strengthening/hardening mechanisms across various DP-MPEA systems, offering valuable guidelines for future alloy design.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"15 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.057","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties over a broad temperature range from cryogenic temperatures (CTs) to room temperature (RT). Specifically, while the deformation mechanism is dominated solely by dislocation slip at RT, the reduction in stacking fault energy (SFE) at CTs leads to enhanced strain hardening with deformation twinning. This study employs in-situ neutron diffraction to reveal the temperature-dependent deformation behavior of the FCC/body-centered cubic (BCC) dual-phase (DP) Al7(CoNiV)93 medium-entropy alloy (MEA), which possesses a matrix exhibiting deformation behavior analogous to that of representative equi-atomic MPEAs. Alongside the increased lattice friction stress associated with reduced temperature as a thermal component, deformation twinning at liquid nitrogen temperature (LNT) facilitates dislocation activity in the FCC matrix, leading to additional strain hardening induced by the dynamic Hall–Petch effect. This would give the appearance that the improved strengthening/hardening behaviors at LNT, compared to RT, are primarily attributable to the FCC phase. In contrast, the BCC precipitates are governed solely by dislocation slip for plastic deformation at both 77 K and 298 K, exhibiting a similar trend in dislocation density evolution. Nevertheless, empirical and quantitative findings indicate that the intrinsically high Peierls–Nabarro barriers in the BCC precipitates exhibit pronounced temperature-dependent lattice friction stress, suggesting that the BCC precipitates play a more significant role in the temperature-dependent strengthening/hardening behaviors for the DP-MEA. This study provides a comprehensive understanding of deformation behavior by thoroughly analyzing temperature-dependent strengthening/hardening mechanisms across various DP-MPEA systems, offering valuable guidelines for future alloy design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Localized surface plasmon resonance effect in S-scheme photocatalyst Design of photovoltaic materials assisted by machine learning and the mechanical tunability under micro-strain Temperature-dependent deformation behavior of dual-phase medium-entropy alloy: In-situ neutron diffraction study Accelerated O2 adsorption and stabilized *OOH for electrocatalytic H2O2 production Achieving excellent strength-ductility combination in AA6061 alloy via a novel thermomechanical processing technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1