Mechanobiological enhancement of electrospun PCL/nHA membranes for guided tissue regeneration applications.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2025-01-05 DOI:10.1177/08853282241312285
Niki Dadgari, Hamidreza Fotoukian, Masoumeh Haghbin Nazarpak, Mehran Solati-Hashjin
{"title":"Mechanobiological enhancement of electrospun PCL/nHA membranes for guided tissue regeneration applications.","authors":"Niki Dadgari, Hamidreza Fotoukian, Masoumeh Haghbin Nazarpak, Mehran Solati-Hashjin","doi":"10.1177/08853282241312285","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.5 wt%) were fabricated using the electrospinning method. The physicochemical, mechanical, and biological properties of the membranes were evaluated. The synthesized nHA particles had an average size of 52 nm. Electrospun membranes exhibited uniform fibrous morphology with porosities ranging from 56% to 86%. Cyclic thermal stress (5°C-50°C) improved the mechanical properties of the composite membranes, resulting in a decrease in ultimate tensile strength (UTS) for pristine PCL from 3 ± 0.12 MPa to 1.7 ± 0.11 MPa, while the UTS for PCL membranes containing 1.5% nHA increased from 3.3 ± 0.30 MPa to 4.18 ± 0.28 MPa. <i>In vitro</i> bioactivity in simulated body fluid (SBF) showed enhanced apatite formation, particularly after 21 and 28 days. Cytotoxicity assays with MG-63 osteoblast-like cells demonstrated good biological performance. The incorporation of nHA not only improved the mechanical properties but also enhanced the bioactivity and cytocompatibility of the electrospun PCL membranes, making them promising candidates for guided tissue regeneration (GTR) applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241312285"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241312285","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.5 wt%) were fabricated using the electrospinning method. The physicochemical, mechanical, and biological properties of the membranes were evaluated. The synthesized nHA particles had an average size of 52 nm. Electrospun membranes exhibited uniform fibrous morphology with porosities ranging from 56% to 86%. Cyclic thermal stress (5°C-50°C) improved the mechanical properties of the composite membranes, resulting in a decrease in ultimate tensile strength (UTS) for pristine PCL from 3 ± 0.12 MPa to 1.7 ± 0.11 MPa, while the UTS for PCL membranes containing 1.5% nHA increased from 3.3 ± 0.30 MPa to 4.18 ± 0.28 MPa. In vitro bioactivity in simulated body fluid (SBF) showed enhanced apatite formation, particularly after 21 and 28 days. Cytotoxicity assays with MG-63 osteoblast-like cells demonstrated good biological performance. The incorporation of nHA not only improved the mechanical properties but also enhanced the bioactivity and cytocompatibility of the electrospun PCL membranes, making them promising candidates for guided tissue regeneration (GTR) applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Mechanobiological enhancement of electrospun PCL/nHA membranes for guided tissue regeneration applications. Levofloxacin-loaded silicone contact lenses materials for ocular drug delivery. The effects of process parameters on the mechanical properties and degradation behavior of Fe/HA biodegradable materials. Biomimetic niosomal versus liposomal nanoparticle-based aspirin injection for treating stroke and myocardial infarction. Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1