Nationwide real-world implementation of AI for cancer detection in population-based mammography screening

IF 58.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature Medicine Pub Date : 2025-01-07 DOI:10.1038/s41591-024-03408-6
Nora Eisemann, Stefan Bunk, Trasias Mukama, Hannah Baltus, Susanne A. Elsner, Timo Gomille, Gerold Hecht, Sylvia Heywang-Köbrunner, Regine Rathmann, Katja Siegmann-Luz, Thilo Töllner, Toni Werner Vomweg, Christian Leibig, Alexander Katalinic
{"title":"Nationwide real-world implementation of AI for cancer detection in population-based mammography screening","authors":"Nora Eisemann, Stefan Bunk, Trasias Mukama, Hannah Baltus, Susanne A. Elsner, Timo Gomille, Gerold Hecht, Sylvia Heywang-Köbrunner, Regine Rathmann, Katja Siegmann-Luz, Thilo Töllner, Toni Werner Vomweg, Christian Leibig, Alexander Katalinic","doi":"10.1038/s41591-024-03408-6","DOIUrl":null,"url":null,"abstract":"<p>Artificial intelligence (AI) in mammography screening has shown promise in retrospective evaluations, but few prospective studies exist. PRAIM is an observational, multicenter, real-world, noninferiority, implementation study comparing the performance of AI-supported double reading to standard double reading (without AI) among women (50–69 years old) undergoing organized mammography screening at 12 sites in Germany. Radiologists in this study voluntarily chose whether to use the AI system. From July 2021 to February 2023, a total of 463,094 women were screened (260,739 with AI support) by 119 radiologists. Radiologists in the AI-supported screening group achieved a breast cancer detection rate of 6.7 per 1,000, which was 17.6% (95% confidence interval: +5.7%, +30.8%) higher than and statistically superior to the rate (5.7 per 1,000) achieved in the control group. The recall rate in the AI group was 37.4 per 1,000, which was lower than and noninferior to that (38.3 per 1,000) in the control group (percentage difference: −2.5% (−6.5%, +1.7%)). The positive predictive value (PPV) of recall was 17.9% in the AI group compared to 14.9% in the control group. The PPV of biopsy was 64.5% in the AI group versus 59.2% in the control group. Compared to standard double reading, AI-supported double reading was associated with a higher breast cancer detection rate without negatively affecting the recall rate, strongly indicating that AI can improve mammography screening metrics.</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"133 1","pages":""},"PeriodicalIF":58.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-024-03408-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) in mammography screening has shown promise in retrospective evaluations, but few prospective studies exist. PRAIM is an observational, multicenter, real-world, noninferiority, implementation study comparing the performance of AI-supported double reading to standard double reading (without AI) among women (50–69 years old) undergoing organized mammography screening at 12 sites in Germany. Radiologists in this study voluntarily chose whether to use the AI system. From July 2021 to February 2023, a total of 463,094 women were screened (260,739 with AI support) by 119 radiologists. Radiologists in the AI-supported screening group achieved a breast cancer detection rate of 6.7 per 1,000, which was 17.6% (95% confidence interval: +5.7%, +30.8%) higher than and statistically superior to the rate (5.7 per 1,000) achieved in the control group. The recall rate in the AI group was 37.4 per 1,000, which was lower than and noninferior to that (38.3 per 1,000) in the control group (percentage difference: −2.5% (−6.5%, +1.7%)). The positive predictive value (PPV) of recall was 17.9% in the AI group compared to 14.9% in the control group. The PPV of biopsy was 64.5% in the AI group versus 59.2% in the control group. Compared to standard double reading, AI-supported double reading was associated with a higher breast cancer detection rate without negatively affecting the recall rate, strongly indicating that AI can improve mammography screening metrics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Medicine
Nature Medicine 医学-生化与分子生物学
CiteScore
100.90
自引率
0.70%
发文量
525
审稿时长
1 months
期刊介绍: Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors. Nature Medicine consider all types of clinical research, including: -Case-reports and small case series -Clinical trials, whether phase 1, 2, 3 or 4 -Observational studies -Meta-analyses -Biomarker studies -Public and global health studies Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.
期刊最新文献
Angiogenic factors versus fetomaternal Doppler for fetal growth restriction at term: an open-label, randomized controlled trial Intracerebroventricular anaerobic dopamine in Parkinson’s disease with l-dopa-related complications: a phase 1/2 randomized-controlled trial Effects of early, late and self-selected time-restricted eating on visceral adipose tissue and cardiometabolic health in participants with overweight or obesity: a randomized controlled trial Nationwide real-world implementation of AI for cancer detection in population-based mammography screening Neoadjuvant anti-PD-1 alone or in combination with anti-TIGIT or an oncolytic virus in resectable stage IIIB–D melanoma: a phase 1/2 trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1