Franziska L. Lampart, Roman Vetter, Kevin A. Yamauchi, Yifan Wang, Steve Runser, Nico Strohmeyer, Florian Meer, Marie-Didiée Hussherr, Gieri Camenisch, Hans-Helge Seifert, Cyrill A. Rentsch, Clémentine Le Magnen, Daniel J. Müller, Lukas Bubendorf, Dagmar Iber
{"title":"Morphometry and mechanical instability at the onset of epithelial bladder cancer","authors":"Franziska L. Lampart, Roman Vetter, Kevin A. Yamauchi, Yifan Wang, Steve Runser, Nico Strohmeyer, Florian Meer, Marie-Didiée Hussherr, Gieri Camenisch, Hans-Helge Seifert, Cyrill A. Rentsch, Clémentine Le Magnen, Daniel J. Müller, Lukas Bubendorf, Dagmar Iber","doi":"10.1038/s41567-024-02735-2","DOIUrl":null,"url":null,"abstract":"<p>Malignancies of epithelial tissues, called carcinomas, account for most cancer cases. Research has largely focused on correlating different carcinoma subtypes to genetic alterations. However, as well as a rewiring in the signalling networks, carcinoma progression is accompanied by mechanical changes in the epithelial cells and the extracellular matrix. Here we reveal intricate morphologies in the basement membrane at the onset of bladder cancer and propose that they emerge from a mechanical instability upon epithelial overgrowth. We imaged mouse and human bladder tissue and performed differential growth simulations, and found that stiffness changes in the different mucosa layers can result in aberrant tissue morphologies. The resulting thickening, wrinkles and folds resemble early papillary tumours and carcinomas in situ. Atomic force microscopy confirmed local stiffness changes in the pathological basement membrane. Our findings suggest a possible mechanical origin of the different bladder carcinoma subtypes and may guide future developments in treatment and prophylaxis.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"35 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02735-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Malignancies of epithelial tissues, called carcinomas, account for most cancer cases. Research has largely focused on correlating different carcinoma subtypes to genetic alterations. However, as well as a rewiring in the signalling networks, carcinoma progression is accompanied by mechanical changes in the epithelial cells and the extracellular matrix. Here we reveal intricate morphologies in the basement membrane at the onset of bladder cancer and propose that they emerge from a mechanical instability upon epithelial overgrowth. We imaged mouse and human bladder tissue and performed differential growth simulations, and found that stiffness changes in the different mucosa layers can result in aberrant tissue morphologies. The resulting thickening, wrinkles and folds resemble early papillary tumours and carcinomas in situ. Atomic force microscopy confirmed local stiffness changes in the pathological basement membrane. Our findings suggest a possible mechanical origin of the different bladder carcinoma subtypes and may guide future developments in treatment and prophylaxis.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.