{"title":"Counterflow superfluidity in a two-component Mott insulator","authors":"Yong-Guang Zheng, An Luo, Ying-Chao Shen, Ming-Gen He, Zi-Hang Zhu, Ying Liu, Wei-Yong Zhang, Hui Sun, Youjin Deng, Zhen-Sheng Yuan, Jian-Wei Pan","doi":"10.1038/s41567-024-02732-5","DOIUrl":null,"url":null,"abstract":"<p>Counterflow superfluidity is an anomalous quantum phase that was predicted two decades ago in the context of a two-component Bose–Hubbard model. In this phase, although both components exhibit fluidity, their correlated counterflow currents cancel each other out, resulting in the system behaving as an incompressible Mott insulator. However, realizing and identifying this phase experimentally has proven challenging due to the stringent requirements for a single set-up, including defect-free state preparation, minimal heating during coherent manipulations, and spin- and site-resolved detection of the phases. Here, we report on the observation of counterflow superfluidity in a binary Bose mixture in optical lattices. After preparing a low-entropy spin-Mott state by conveying two spin-1/2 bosonic atoms at every single lattice site to form a doublon, we adiabatically drove the system to the counterflow superfluid phase at approximately 1 nK. We observed features of antipair correlations through site- and spin-resolved quantum-gas microscopy in both real and momentum spaces. Finally, we measured long-range off-diagonal spin correlations in the rotated basis, revealing a correlation length approaching the system size. These techniques and observations demonstrated here provide accessibility to Borromean counterfluids.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"24 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02732-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Counterflow superfluidity is an anomalous quantum phase that was predicted two decades ago in the context of a two-component Bose–Hubbard model. In this phase, although both components exhibit fluidity, their correlated counterflow currents cancel each other out, resulting in the system behaving as an incompressible Mott insulator. However, realizing and identifying this phase experimentally has proven challenging due to the stringent requirements for a single set-up, including defect-free state preparation, minimal heating during coherent manipulations, and spin- and site-resolved detection of the phases. Here, we report on the observation of counterflow superfluidity in a binary Bose mixture in optical lattices. After preparing a low-entropy spin-Mott state by conveying two spin-1/2 bosonic atoms at every single lattice site to form a doublon, we adiabatically drove the system to the counterflow superfluid phase at approximately 1 nK. We observed features of antipair correlations through site- and spin-resolved quantum-gas microscopy in both real and momentum spaces. Finally, we measured long-range off-diagonal spin correlations in the rotated basis, revealing a correlation length approaching the system size. These techniques and observations demonstrated here provide accessibility to Borromean counterfluids.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.