Multimodal Operando Analysis of Lithium Sulfur Multilayer Pouch Cells: An In-Depth Investigation on Cell Component Design and Performance

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-01-07 DOI:10.1002/aenm.202404256
Rafael Müller, Tom Boenke, Susanne Dörfler, Thomas Abendroth, Paul Härtel, Holger Althues, Stefan Kaskel, Nikolay Kardjilov, Henning Markötter, Michael Sintschuk, André Hilger, Ingo Manke, Sebastian Risse
{"title":"Multimodal Operando Analysis of Lithium Sulfur Multilayer Pouch Cells: An In-Depth Investigation on Cell Component Design and Performance","authors":"Rafael Müller, Tom Boenke, Susanne Dörfler, Thomas Abendroth, Paul Härtel, Holger Althues, Stefan Kaskel, Nikolay Kardjilov, Henning Markötter, Michael Sintschuk, André Hilger, Ingo Manke, Sebastian Risse","doi":"10.1002/aenm.202404256","DOIUrl":null,"url":null,"abstract":"This study presents an innovative operando analysis of lithium-sulfur (Li/S) multilayer pouch cells, employing a combination of lab-source and synchrotron x-ray imaging to investigate sulfur crystallite dissolution and lithium dendrite formation. By integrating advanced X-ray imaging, impedance spectroscopy, and simultaneous monitoring of temperature and pressure, the research uncovers critical insights into the behavior of active and inactive cell components. The analysis reveals significant degradation increments, primarily driven by side product accumulation and the deterioration of lithium microstructures, which contribute to performance loss over cycling. Additionally, temperature distribution analysis shows a strong correlation between joule heating, polarization resistance, and the observed endothermic processes during crystallization. These findings provide a comprehensive understanding of the mechanistic processes within industrially relevant pouch cells, highlighting opportunities for optimizing Li/S cell designs and advancing high-energy-density battery systems for commercial applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"36 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404256","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative operando analysis of lithium-sulfur (Li/S) multilayer pouch cells, employing a combination of lab-source and synchrotron x-ray imaging to investigate sulfur crystallite dissolution and lithium dendrite formation. By integrating advanced X-ray imaging, impedance spectroscopy, and simultaneous monitoring of temperature and pressure, the research uncovers critical insights into the behavior of active and inactive cell components. The analysis reveals significant degradation increments, primarily driven by side product accumulation and the deterioration of lithium microstructures, which contribute to performance loss over cycling. Additionally, temperature distribution analysis shows a strong correlation between joule heating, polarization resistance, and the observed endothermic processes during crystallization. These findings provide a comprehensive understanding of the mechanistic processes within industrially relevant pouch cells, highlighting opportunities for optimizing Li/S cell designs and advancing high-energy-density battery systems for commercial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂硫多层袋状电池的多模态操作分析:电池组件设计与性能的深入研究
本研究提出了一种创新的锂硫(Li/S)多层袋状电池的operando分析方法,采用实验室源和同步加速器x射线成像相结合的方法来研究硫晶体的溶解和锂枝晶的形成。通过集成先进的x射线成像、阻抗光谱以及同时监测温度和压力,该研究揭示了活性和非活性细胞成分行为的关键见解。分析表明,主要由副产物积累和锂微结构恶化驱动的显著降解增量,导致循环过程中的性能损失。此外,温度分布分析表明焦耳加热、极化电阻与结晶过程中观察到的吸热过程有很强的相关性。这些发现为工业相关袋式电池的机械过程提供了全面的理解,突出了优化Li/S电池设计和推进高能量密度电池系统用于商业应用的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
How Shallow and Deep Defects Drive Carrier Dynamics in Tin-Iodide Perovskites Toward Green Processing of Perovskite Solar Cells: Protic Ionic Liquids Enable Water- and Alcohol-Based MAPbI3 Precursors Inks for Slot-Die Coating Confining Surface Oxygen Redox in Double Perovskites for Enhanced Oxygen Evolution Reaction Activity and Stability Impurity Impacts of Recycling NMC Cathodes Ambient-Printed Methylammonium-Free Perovskite Solar Cells Enabled by Multiple Molecular Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1