Spin-wave-mediated mutual synchronization and phase tuning in spin Hall nano-oscillators

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-01-08 DOI:10.1038/s41567-024-02728-1
Akash Kumar, Avinash Kumar Chaurasiya, Victor H. González, Nilamani Behera, Ademir Alemán, Roman Khymyn, Ahmad A. Awad, Johan Åkerman
{"title":"Spin-wave-mediated mutual synchronization and phase tuning in spin Hall nano-oscillators","authors":"Akash Kumar, Avinash Kumar Chaurasiya, Victor H. González, Nilamani Behera, Ademir Alemán, Roman Khymyn, Ahmad A. Awad, Johan Åkerman","doi":"10.1038/s41567-024-02728-1","DOIUrl":null,"url":null,"abstract":"Spin–orbit torque can drive auto-oscillations of propagating spin-wave modes in nano-constriction spin Hall nano-oscillators. These modes facilitate both long-range coupling and the possibility of controlling their phase, which is a crucial aspect for device application. Here, we demonstrate variable-phase coupling between two nano-constriction spin Hall nano-oscillators and their mutual synchronization driven by propagating spin waves. Using electrical measurements and phase-resolved micro-focused Brillouin light scattering microscopy, we show that the phase of the mutual synchronization can be tuned by modulating the drive current or the applied field. Our micromagnetic simulations explore the phase tunability using voltage gating. Our results advance the capabilities of mutually synchronized spin Hall nano-oscillators and open the possibilities for applications in spin-wave logic-based devices. Phase tuning of propagating spin waves is a crucial step in the development of devices based on magnons, which are the quanta of spin waves. Now, this has been demonstrated in a device comprising two spin Hall nano-oscillators.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 2","pages":"245-252"},"PeriodicalIF":17.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02728-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02728-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin–orbit torque can drive auto-oscillations of propagating spin-wave modes in nano-constriction spin Hall nano-oscillators. These modes facilitate both long-range coupling and the possibility of controlling their phase, which is a crucial aspect for device application. Here, we demonstrate variable-phase coupling between two nano-constriction spin Hall nano-oscillators and their mutual synchronization driven by propagating spin waves. Using electrical measurements and phase-resolved micro-focused Brillouin light scattering microscopy, we show that the phase of the mutual synchronization can be tuned by modulating the drive current or the applied field. Our micromagnetic simulations explore the phase tunability using voltage gating. Our results advance the capabilities of mutually synchronized spin Hall nano-oscillators and open the possibilities for applications in spin-wave logic-based devices. Phase tuning of propagating spin waves is a crucial step in the development of devices based on magnons, which are the quanta of spin waves. Now, this has been demonstrated in a device comprising two spin Hall nano-oscillators.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自旋霍尔纳米振荡器中自旋波介导的相互同步和相位调谐
自旋轨道转矩可以驱动纳米缩窄自旋霍尔纳米振荡器中传播自旋波模式的自激振荡。这些模式促进了远程耦合和控制其相位的可能性,这是器件应用的关键方面。在这里,我们展示了两个纳米收缩自旋霍尔纳米振荡器之间的可变相位耦合以及它们在传播自旋波驱动下的相互同步。利用电学测量和相位分辨微聚焦布里渊光散射显微镜,我们发现可以通过调制驱动电流或外加电场来调节相互同步的相位。我们的微磁模拟探索了使用电压门控的相位可调性。我们的研究结果提高了相互同步自旋霍尔纳米振荡器的能力,并为自旋波逻辑器件的应用开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Diffraction minima resolve point scatterers at few hundredths of the wavelength Cyclic jetting enables microbubble-mediated drug delivery Topology shapes dynamics of higher-order networks Universal dissipative dynamics in strongly correlated quantum gases Author Correction: Magnetic flux trapping in hydrogen-rich high-temperature superconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1