{"title":"Biocatalytic programming of protocell-embodied logic gates and circuits","authors":"Ananya Mishra, Avinash J. Patil, Stephen Mann","doi":"10.1016/j.chempr.2024.11.017","DOIUrl":null,"url":null,"abstract":"The construction of biomimetic agents capable of generating precise outcomes in response to specific molecular inputs is a central challenge for the development of programmable synthetic cells with integrated biomimetic functions. Here, we harness acoustic standing waves to generate periodic microarrays of enzyme-encoded coacervate microdroplets for the implementation of embodied enzyme logic circuits (EELCs). We describe a range of biocatalytic communication channels capable of performing localized and distributed Boolean logic functions in single or segregated populations of model protocells by using a range of molecular inputs, fluorescence or hydrogelation outputs, and programmable response dynamics. To implement long-range collective signal processing, we integrate EELC modules across spatially segregated protocell populations to generate distributed time-regulated logic operations involving negative feedback, pulse generation, and redirected output-input connectivity. Our results provide a step toward the non-DNA programming of model protocell communication and computational networks for miniaturized autonomous sensing devices capable of chemical-based information processing.","PeriodicalId":268,"journal":{"name":"Chem","volume":"56 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.11.017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of biomimetic agents capable of generating precise outcomes in response to specific molecular inputs is a central challenge for the development of programmable synthetic cells with integrated biomimetic functions. Here, we harness acoustic standing waves to generate periodic microarrays of enzyme-encoded coacervate microdroplets for the implementation of embodied enzyme logic circuits (EELCs). We describe a range of biocatalytic communication channels capable of performing localized and distributed Boolean logic functions in single or segregated populations of model protocells by using a range of molecular inputs, fluorescence or hydrogelation outputs, and programmable response dynamics. To implement long-range collective signal processing, we integrate EELC modules across spatially segregated protocell populations to generate distributed time-regulated logic operations involving negative feedback, pulse generation, and redirected output-input connectivity. Our results provide a step toward the non-DNA programming of model protocell communication and computational networks for miniaturized autonomous sensing devices capable of chemical-based information processing.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.