{"title":"A light-driven device for neuromorphic computing","authors":"Shimul Kanti Nath","doi":"10.1038/s41377-024-01722-9","DOIUrl":null,"url":null,"abstract":"<p>A unique optoelectronic synaptic device has been developed, leveraging the negative photoconductance property of a single-crystal material system called Cs<sub>2</sub>CoCl<sub>4</sub>. This device exhibits a simultaneous volatile resistive switching response and sensitivity to optical stimuli, positioning Cs<sub>2</sub>CoCl<sub>4</sub> as a promising candidate for optically enhanced neuromorphic applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"23 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01722-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A unique optoelectronic synaptic device has been developed, leveraging the negative photoconductance property of a single-crystal material system called Cs2CoCl4. This device exhibits a simultaneous volatile resistive switching response and sensitivity to optical stimuli, positioning Cs2CoCl4 as a promising candidate for optically enhanced neuromorphic applications.