Ruru Hao, Shixiao Liang, Ziyang Zhai, Hang Zhou, Xin Wang, Xiaopeng Li, Tianhao Guan
{"title":"Privacy-preserving awareness in sensor deployment for traffic flow surveillance","authors":"Ruru Hao, Shixiao Liang, Ziyang Zhai, Hang Zhou, Xin Wang, Xiaopeng Li, Tianhao Guan","doi":"10.1111/mice.13418","DOIUrl":null,"url":null,"abstract":"The deployment of sensors to monitor traffic flow between origin–destination (OD) pairs, within a specified budget, remains a critical concern for both academic researchers and transportation managers. While these technologies are essential for capturing traffic data, the aspect of privacy has often been overlooked. To bridge this gap, this paper introduced the concept of privacy distance and then proposed an integer programming model to optimize traffic sensor locations by maximizing the coverage of traffic flow while taking into account the punishment brought by the risk of privacy leakage. Furthermore, to address the computational efficiency problem in large-scale networks, a flow threshold is set to properly remove some OD pairs to balance the model tractability and computational efficiency. Two case studies of different sizes are carried out to discuss the performance. Case 1 validated the effectiveness of the model, while case 2 demonstrated its capability to handle large-scale problems. The experimental results show that for large-scale networks, setting a flow threshold can reduce computation time by 96% at the cost of sacrificing 12% of the OD coverage.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"23 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13418","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of sensors to monitor traffic flow between origin–destination (OD) pairs, within a specified budget, remains a critical concern for both academic researchers and transportation managers. While these technologies are essential for capturing traffic data, the aspect of privacy has often been overlooked. To bridge this gap, this paper introduced the concept of privacy distance and then proposed an integer programming model to optimize traffic sensor locations by maximizing the coverage of traffic flow while taking into account the punishment brought by the risk of privacy leakage. Furthermore, to address the computational efficiency problem in large-scale networks, a flow threshold is set to properly remove some OD pairs to balance the model tractability and computational efficiency. Two case studies of different sizes are carried out to discuss the performance. Case 1 validated the effectiveness of the model, while case 2 demonstrated its capability to handle large-scale problems. The experimental results show that for large-scale networks, setting a flow threshold can reduce computation time by 96% at the cost of sacrificing 12% of the OD coverage.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.