Mugong Zhang, Xuewei Fang, Xinzhi Li, Zhanxin Li, Ke Huang
{"title":"Tailorable elastocaloric cooling performance of wire-arc directed energy deposition NiTi alloy through concentration gradient design","authors":"Mugong Zhang, Xuewei Fang, Xinzhi Li, Zhanxin Li, Ke Huang","doi":"10.1016/j.jmst.2024.11.058","DOIUrl":null,"url":null,"abstract":"The inherent hysteresis of NiTi alloy samples is one of the key factors limiting their elastocaloric cooling performance. However, reducing hysteresis often leads to a decrease in adiabatic temperature change (Δ<em>T</em><sub>ad</sub>), thereby hindering the application of NiTi alloys in the refrigeration field. Here, NiTi alloys with alternating high-Ni and low-Ni content were fabricated by tailoring heat input during the wire-arc directed energy deposition (DED) process, which modifies the Ni concentration gradient and enables the modulation of the elastocaloric cooling performance of NiTi alloys. The coefficient of performance of material (COP<sub>mat</sub>) of the high-Ni NiTi alloy samples is relatively high, but their Δ<em>T</em><sub>ad</sub> during deformation is lower. On the other hand, the low-Ni NiTi alloy samples, while exhibiting higher Δ<em>T</em><sub>ad</sub>, show poorer stability during cycling. Due to the synergistic effect of the microstructures in the high-Ni and low-Ni region, a favorable combination of low cyclic hysteresis and high Δ<em>T</em><sub>ad</sub> were achieved in the composite NiTi samples. Additionally, the composite NiTi samples also demonstrate excellent cyclic stability, with a degradation rate of only 4% during the cycling process under a 2% strain condition. This study proposes a feasible approach for regulating the elastocaloric effect of NiTi alloys, paving the way for additive manufacturing to prepare elastocaloric cooling materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"22 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.058","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The inherent hysteresis of NiTi alloy samples is one of the key factors limiting their elastocaloric cooling performance. However, reducing hysteresis often leads to a decrease in adiabatic temperature change (ΔTad), thereby hindering the application of NiTi alloys in the refrigeration field. Here, NiTi alloys with alternating high-Ni and low-Ni content were fabricated by tailoring heat input during the wire-arc directed energy deposition (DED) process, which modifies the Ni concentration gradient and enables the modulation of the elastocaloric cooling performance of NiTi alloys. The coefficient of performance of material (COPmat) of the high-Ni NiTi alloy samples is relatively high, but their ΔTad during deformation is lower. On the other hand, the low-Ni NiTi alloy samples, while exhibiting higher ΔTad, show poorer stability during cycling. Due to the synergistic effect of the microstructures in the high-Ni and low-Ni region, a favorable combination of low cyclic hysteresis and high ΔTad were achieved in the composite NiTi samples. Additionally, the composite NiTi samples also demonstrate excellent cyclic stability, with a degradation rate of only 4% during the cycling process under a 2% strain condition. This study proposes a feasible approach for regulating the elastocaloric effect of NiTi alloys, paving the way for additive manufacturing to prepare elastocaloric cooling materials.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.