mmTAA: A Contact-Less Thoracoabdominal Asynchrony Measurement System Based on mmWave Sensing

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-09-30 DOI:10.1109/TMC.2024.3461784
Fenglin Zhang;Zhebin Zhang;Le Kang;Anfu Zhou;Huadong Ma
{"title":"mmTAA: A Contact-Less Thoracoabdominal Asynchrony Measurement System Based on mmWave Sensing","authors":"Fenglin Zhang;Zhebin Zhang;Le Kang;Anfu Zhou;Huadong Ma","doi":"10.1109/TMC.2024.3461784","DOIUrl":null,"url":null,"abstract":"Thoracoabdominal Asynchrony (TAA) is a key metric in respiration monitoring, which characterizes the non-parallel periodical motion of human's rib cage (RC) and abdomen (AB) during each breath. Long-term measurement of TAA plays a significant role in respiration health tracking. Existing TAA measurement methods including Respiratory Inductive Plethysmography (RIP) and Optoelectronic Plethysmography (OEP) all intrusive to subjects and have certain requirements on operation conditions, which limit their usage to hospital scenario. To address this gap, we propose \n<i>mmTAA</i>\n, the first mmWave-based, non-intrusive TAA measurement system ready for ubiquitous usage in daily-life. In \n<i>mmTAA</i>\n, we design a Two-stage RC-AB centroid finding module, aiming to identify the most probable location of RC-AB centroid, which can best represent RC and AB in mmWave sensing scenario. Subsequently, we design TAANet, a novel Convolutional Neural Network (CNN)-based architecture with residual modules, tailored for TAA measurement. Meanwhile, in order to address the imbalance of continuous data, we add imbalance information equalizer including feature and label equalizer during network training. We implement \n<i>mmTAA</i>\n on a commonly used multi-antenna mmWave radar. We prototype, deploy and evaluate \n<i>mmTAA</i>\n on 25 subjects and 25.7h data in total. \n<i>mmTAA</i>\n achieves 4.01\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n MAE and 1.56\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n average error, close to OEP method.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"627-641"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10700839/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Thoracoabdominal Asynchrony (TAA) is a key metric in respiration monitoring, which characterizes the non-parallel periodical motion of human's rib cage (RC) and abdomen (AB) during each breath. Long-term measurement of TAA plays a significant role in respiration health tracking. Existing TAA measurement methods including Respiratory Inductive Plethysmography (RIP) and Optoelectronic Plethysmography (OEP) all intrusive to subjects and have certain requirements on operation conditions, which limit their usage to hospital scenario. To address this gap, we propose mmTAA , the first mmWave-based, non-intrusive TAA measurement system ready for ubiquitous usage in daily-life. In mmTAA , we design a Two-stage RC-AB centroid finding module, aiming to identify the most probable location of RC-AB centroid, which can best represent RC and AB in mmWave sensing scenario. Subsequently, we design TAANet, a novel Convolutional Neural Network (CNN)-based architecture with residual modules, tailored for TAA measurement. Meanwhile, in order to address the imbalance of continuous data, we add imbalance information equalizer including feature and label equalizer during network training. We implement mmTAA on a commonly used multi-antenna mmWave radar. We prototype, deploy and evaluate mmTAA on 25 subjects and 25.7h data in total. mmTAA achieves 4.01 $^{\circ }$ MAE and 1.56 $^{\circ }$ average error, close to OEP method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mmTAA:基于毫米波传感的非接触式胸腹同步测量系统
胸腹不同步(TAA)是呼吸监测的关键指标,它表征了人体每次呼吸时胸腔(RC)和腹部(AB)的非平行周期性运动。长期测量TAA在呼吸健康跟踪中起着重要作用。现有的TAA测量方法包括呼吸感应容积描记(RIP)、光电容积描记(OEP)等,均对受试者有侵入性,且对操作条件有一定要求,限制了其在医院场景的使用。为了解决这一差距,我们提出了mmTAA,这是第一个基于毫米波的非侵入式TAA测量系统,可以在日常生活中广泛使用。在mmTAA中,我们设计了一个两阶段的RC-AB质心寻找模块,旨在确定在毫米波传感场景中最能代表RC和AB的RC-AB质心的最可能位置。随后,我们设计了TAANet,一种新颖的基于卷积神经网络(CNN)的残差模块架构,为TAA测量量身定制。同时,为了解决连续数据的不平衡问题,我们在网络训练中加入了不平衡信息均衡器,包括特征均衡器和标签均衡器。我们在一种常用的多天线毫米波雷达上实现了mmTAA。我们对25个受试者和25.7小时的数据进行了mmTAA的原型、部署和评估。mmTAA实现4.01$^{\circ}$ MAE和1.56$^{\circ}$平均误差,接近OEP方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Harmonizing Global and Local Class Imbalance for Federated Learning O-RAN-Enabled Intelligent Network Slicing to Meet Service-Level Agreement (SLA) CV-Cast: Computer Vision–Oriented Linear Coding and Transmission AdaWiFi, Collaborative WiFi Sensing for Cross-Environment Adaptation BIT-FL: Blockchain-Enabled Incentivized and Secure Federated Learning Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1