Harmonizing Global and Local Class Imbalance for Federated Learning

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-10-18 DOI:10.1109/TMC.2024.3476340
Jialiang Zhu;Hao Zheng;Wenchao Xu;Haozhao Wang;Zhiming He;Yuxuan Liu;Shuang Wang;Qi Sun
{"title":"Harmonizing Global and Local Class Imbalance for Federated Learning","authors":"Jialiang Zhu;Hao Zheng;Wenchao Xu;Haozhao Wang;Zhiming He;Yuxuan Liu;Shuang Wang;Qi Sun","doi":"10.1109/TMC.2024.3476340","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) is to collaboratively train a global model among distributed clients by iteratively aggregating their local updates without sharing their raw data, whereby the global modal can approximately converge to the centralized training way over a global dataset that composed of all local datasets (i.e., union of all users’ local data). However, in real-world scenarios, the distributions of the data classes are often imbalanced not only locally, but also in the global dataset, which severely deteriorate the FL performance due to the conflicting knowledge aggregation. Existing solutions for FL class imbalance either focus on the local data to regulate the training process or purely aim at the global datasets, which often fail to alleviate the class imbalance problem if there is mismatch between the local and global imbalance. Considering these limitations, this paper proposes a Global-Local Joint Learning method, namely GLJL, which simultaneously harmonizes the global and local class imbalance issue by jointly embedding the local and the global factors into each client’s loss function. Through extensive experiments over popular datasets with various class imbalance settings, we show that the proposed method can significantly improve the model accuracy over minority classes without sacrificing the accuracy of other classes.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"1120-1131"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10722900/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) is to collaboratively train a global model among distributed clients by iteratively aggregating their local updates without sharing their raw data, whereby the global modal can approximately converge to the centralized training way over a global dataset that composed of all local datasets (i.e., union of all users’ local data). However, in real-world scenarios, the distributions of the data classes are often imbalanced not only locally, but also in the global dataset, which severely deteriorate the FL performance due to the conflicting knowledge aggregation. Existing solutions for FL class imbalance either focus on the local data to regulate the training process or purely aim at the global datasets, which often fail to alleviate the class imbalance problem if there is mismatch between the local and global imbalance. Considering these limitations, this paper proposes a Global-Local Joint Learning method, namely GLJL, which simultaneously harmonizes the global and local class imbalance issue by jointly embedding the local and the global factors into each client’s loss function. Through extensive experiments over popular datasets with various class imbalance settings, we show that the proposed method can significantly improve the model accuracy over minority classes without sacrificing the accuracy of other classes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Harmonizing Global and Local Class Imbalance for Federated Learning O-RAN-Enabled Intelligent Network Slicing to Meet Service-Level Agreement (SLA) CV-Cast: Computer Vision–Oriented Linear Coding and Transmission AdaWiFi, Collaborative WiFi Sensing for Cross-Environment Adaptation BIT-FL: Blockchain-Enabled Incentivized and Secure Federated Learning Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1