Zhenlin Ouyang, Wenbo He, Di Wu, Hao An, Lei Duan, Min Jiao, Xiaoyu He, Qinyue Yu, Jiaxin Zhang, Qian Qin, Ruochen Wang, Fang Zheng, Peter M. Hwang, Xiaoting Hua, Li Zhu, Yurong Wen
{"title":"Cryo-EM structure and complementary drug efflux activity of the Acinetobacter baumannii multidrug efflux pump AdeG","authors":"Zhenlin Ouyang, Wenbo He, Di Wu, Hao An, Lei Duan, Min Jiao, Xiaoyu He, Qinyue Yu, Jiaxin Zhang, Qian Qin, Ruochen Wang, Fang Zheng, Peter M. Hwang, Xiaoting Hua, Li Zhu, Yurong Wen","doi":"10.1016/j.str.2024.12.009","DOIUrl":null,"url":null,"abstract":"Multidrug-resistant <em>Acinetobacter baumannii</em> has emerged as one of the most antibiotic-resistant bacterial pathogens associated with nosocomial infection, with its resistance highly depending on multiple multidrug efflux pumps. Here, we report the cryoelectron microscopy (cryo-EM) structure of <em>Acinetobacter</em> drug efflux G (AdeG), the inner membrane component of one of three important resistance-nodulation-cell division (RND) pump family members in <em>A. baumannii</em>, which is involved in drug resistance to chloramphenicol, trimethoprim, ciprofloxacin, and clindamycin. We systematically compare the structures and substrate binding specificities of AdeG, AdeB, and AdeJ multidrug efflux pumps via molecular docking, revealing potential determinants for drug binding. Knockout experiments demonstrate a functional complementarity between AdeABC, AdeFGH, and AdeIJK. Our study provides a structural understanding of <em>A. baumannii</em> multidrug efflux pump AdeG and reveals complementary drug efflux activity between AdeG and other RND efflux pumps, which may promote further rational drug discovery efforts targeting multidrug efflux pumps.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"31 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.12.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug-resistant Acinetobacter baumannii has emerged as one of the most antibiotic-resistant bacterial pathogens associated with nosocomial infection, with its resistance highly depending on multiple multidrug efflux pumps. Here, we report the cryoelectron microscopy (cryo-EM) structure of Acinetobacter drug efflux G (AdeG), the inner membrane component of one of three important resistance-nodulation-cell division (RND) pump family members in A. baumannii, which is involved in drug resistance to chloramphenicol, trimethoprim, ciprofloxacin, and clindamycin. We systematically compare the structures and substrate binding specificities of AdeG, AdeB, and AdeJ multidrug efflux pumps via molecular docking, revealing potential determinants for drug binding. Knockout experiments demonstrate a functional complementarity between AdeABC, AdeFGH, and AdeIJK. Our study provides a structural understanding of A. baumannii multidrug efflux pump AdeG and reveals complementary drug efflux activity between AdeG and other RND efflux pumps, which may promote further rational drug discovery efforts targeting multidrug efflux pumps.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.