Viktoria Bågenholm, Karl Patric Nordlin, Andrea Pasquadibisceglie, Andrey Belinskiy, Caroline Marcher Holm, Hajira Ahmed Hotiana, Kamil Gotfryd, Lucie Delemotte, Hussam Hassan Nour-Eldin, Per Amstrup Pedersen, Pontus Gourdon
{"title":"Cryo-EM structure of the human monocarboxylate transporter 10","authors":"Viktoria Bågenholm, Karl Patric Nordlin, Andrea Pasquadibisceglie, Andrey Belinskiy, Caroline Marcher Holm, Hajira Ahmed Hotiana, Kamil Gotfryd, Lucie Delemotte, Hussam Hassan Nour-Eldin, Per Amstrup Pedersen, Pontus Gourdon","doi":"10.1016/j.str.2025.02.012","DOIUrl":null,"url":null,"abstract":"The monocarboxylate transporter (MCT) membrane protein family has 14 human members that perform key cellular functions, such as regulating metabolism. MCT8 and MCT10 have unique cargo specificity, transporting thyroid hormone and, in the case of MCT10, aromatic amino acids. Dysfunctional MCT8 causes the severe Allan-Herndon-Dudley syndrome, yet the (patho)physiology and function of MCT8 and MCT10 are not clearly understood, especially at a structural level. We present the cryoelectron microscopy (cryo-EM) structure of MCT10, displaying the classical major facilitator superfamily fold, caught in an inward-open configuration. Together with cargo docking models, the outward-open MCT10 AlphaFold model and validating functional analysis, cargo specificity and transport principles are proposed. These findings significantly enhance our understanding of the structure and function of MCTs, information that also may be valuable for the development of novel treatments against MCT-related disorders to address global challenges such as diabetes, obesity, and cancer.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"61 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.02.012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The monocarboxylate transporter (MCT) membrane protein family has 14 human members that perform key cellular functions, such as regulating metabolism. MCT8 and MCT10 have unique cargo specificity, transporting thyroid hormone and, in the case of MCT10, aromatic amino acids. Dysfunctional MCT8 causes the severe Allan-Herndon-Dudley syndrome, yet the (patho)physiology and function of MCT8 and MCT10 are not clearly understood, especially at a structural level. We present the cryoelectron microscopy (cryo-EM) structure of MCT10, displaying the classical major facilitator superfamily fold, caught in an inward-open configuration. Together with cargo docking models, the outward-open MCT10 AlphaFold model and validating functional analysis, cargo specificity and transport principles are proposed. These findings significantly enhance our understanding of the structure and function of MCTs, information that also may be valuable for the development of novel treatments against MCT-related disorders to address global challenges such as diabetes, obesity, and cancer.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.