Tao Wang, Fenghui Gong, Xue Ma, Shen Pan, Xian-Kui Wei, Changyang Kuo, Suguru Yoshida, Yu-Chieh Ku, Shuai Wang, Zhenni Yang, Sankalpa Hazra, Kelvin H. L. Zhang, Xingjun Liu, Yunlong Tang, Yin-Lian Zhu, Chun-Fu Chang, Sujit Das, Xiuliang Ma, Lang Chen, Bin Xu, Venkatraman Gopalan, Laurent Bellaiche, Lane W. Martin, Zuhuang Chen
{"title":"Large enhancement of ferroelectric properties of perovskite oxides via nitrogen incorporation","authors":"Tao Wang, Fenghui Gong, Xue Ma, Shen Pan, Xian-Kui Wei, Changyang Kuo, Suguru Yoshida, Yu-Chieh Ku, Shuai Wang, Zhenni Yang, Sankalpa Hazra, Kelvin H. L. Zhang, Xingjun Liu, Yunlong Tang, Yin-Lian Zhu, Chun-Fu Chang, Sujit Das, Xiuliang Ma, Lang Chen, Bin Xu, Venkatraman Gopalan, Laurent Bellaiche, Lane W. Martin, Zuhuang Chen","doi":"10.1126/sciadv.ads8830","DOIUrl":null,"url":null,"abstract":"Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO <jats:sub>3</jats:sub> thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere. The enhanced hybridization between titanium and nitrogen induces a large ferroelectric polarization of 70 μC/cm <jats:sup>2</jats:sup> and high Curie temperature of ~1213 K, which are ~2.8 times larger and ~810 K higher than in bulk BaTiO <jats:sub>3</jats:sub> , respectively. These results suggest great potential for anion-substituted perovskite oxides in producing emergent functionalities and device applications.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"48 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads8830","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO 3 thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere. The enhanced hybridization between titanium and nitrogen induces a large ferroelectric polarization of 70 μC/cm 2 and high Curie temperature of ~1213 K, which are ~2.8 times larger and ~810 K higher than in bulk BaTiO 3 , respectively. These results suggest great potential for anion-substituted perovskite oxides in producing emergent functionalities and device applications.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.