{"title":"Semi‐supervised pipe video temporal defect interval localization","authors":"Zhu Huang, Gang Pan, Chao Kang, YaoZhi Lv","doi":"10.1111/mice.13403","DOIUrl":null,"url":null,"abstract":"In sewer pipe closed‐circuit television inspection, accurate temporal defect localization is essential for effective pipe assessment. Industry standards typically do not require time interval annotations, which are more informative but lead to additional costs for fully supervised methods. Additionally, differences in scene types and camera motion patterns between pipe inspections and temporal action localization (TAL) hinder the effective transfer of point‐supervised TAL methods. Therefore, this study presents a semi‐supervised multi‐prototype‐based method incorporating visual odometry for enhanced attention guidance (PipeSPO). The semi‐supervised multi‐prototype‐based method effectively leverages both unlabeled data and time‐point annotations, which enhances performance and reduces annotation costs. Meanwhile, visual odometry features exploit the camera's unique motion patterns in pipe videos, offering additional insights to inform the model. Experiments on real‐world datasets demonstrate that PipeSPO achieves 41.89% AP across intersection over union thresholds of 0.1–0.7, improving by 8.14% over current state‐of‐the‐art methods.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"24 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13403","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In sewer pipe closed‐circuit television inspection, accurate temporal defect localization is essential for effective pipe assessment. Industry standards typically do not require time interval annotations, which are more informative but lead to additional costs for fully supervised methods. Additionally, differences in scene types and camera motion patterns between pipe inspections and temporal action localization (TAL) hinder the effective transfer of point‐supervised TAL methods. Therefore, this study presents a semi‐supervised multi‐prototype‐based method incorporating visual odometry for enhanced attention guidance (PipeSPO). The semi‐supervised multi‐prototype‐based method effectively leverages both unlabeled data and time‐point annotations, which enhances performance and reduces annotation costs. Meanwhile, visual odometry features exploit the camera's unique motion patterns in pipe videos, offering additional insights to inform the model. Experiments on real‐world datasets demonstrate that PipeSPO achieves 41.89% AP across intersection over union thresholds of 0.1–0.7, improving by 8.14% over current state‐of‐the‐art methods.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.