Minimizing DMSO Residues in Perovskite Films for Efficient and Long-Term Stable Solar Cells

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-01-10 DOI:10.1002/aenm.202404538
Kangwei Mo, Xueliang Zhu, Man Yang, Zexu Xue, Sheng Li, Mubai li, Yujie Yang, Siyang Cheng, Hao Li, Qianqian Lin, Zhiping Wang
{"title":"Minimizing DMSO Residues in Perovskite Films for Efficient and Long-Term Stable Solar Cells","authors":"Kangwei Mo, Xueliang Zhu, Man Yang, Zexu Xue, Sheng Li, Mubai li, Yujie Yang, Siyang Cheng, Hao Li, Qianqian Lin, Zhiping Wang","doi":"10.1002/aenm.202404538","DOIUrl":null,"url":null,"abstract":"Dimethyl sulfoxide (DMSO) is commonly used as a solvent in the fabrication of perovskite solar cells. However, its strong coordination with iodoplumbate makes it difficult to remove during film formation, resulting in defects and voids at the perovskite-substrate interface, which compromise efficiency and long-term stability. Here ethyl acrylate (EA), an unsaturated monomer that aids in the effective removal of DMSO from the perovskite film is introduce. EA forms a complex with DMSO, facilitates DMSO de-intercalation, and enhances the co-evaporation process thanks to its low boiling point. Additionally, by incorporating a small amount of the initiator azobis (isobutyronitrile) (AIBN), EA is successfully polymerized into polyacrylate ethyl ester (poly-EA) during crystallization. The evaporated EA helps remove DMSO, while the poly-EA passivates defects in the perovskite films. This dual-function strategy significantly improves device performance, resulting in efficiencies of 25.4% for small-area devices and 20.3% for 15 cm<sup>2</sup> mini-modules. Moreover, poly-EA acts as a protective barrier against moisture and ion migration. Combined with improved DMSO removal, EA-modulated devices demonstrate a T<sub>80</sub> lifetime of up to 1800 h under maximum power point tracking at 55–60% relative humidity in ambient air.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"22 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404538","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dimethyl sulfoxide (DMSO) is commonly used as a solvent in the fabrication of perovskite solar cells. However, its strong coordination with iodoplumbate makes it difficult to remove during film formation, resulting in defects and voids at the perovskite-substrate interface, which compromise efficiency and long-term stability. Here ethyl acrylate (EA), an unsaturated monomer that aids in the effective removal of DMSO from the perovskite film is introduce. EA forms a complex with DMSO, facilitates DMSO de-intercalation, and enhances the co-evaporation process thanks to its low boiling point. Additionally, by incorporating a small amount of the initiator azobis (isobutyronitrile) (AIBN), EA is successfully polymerized into polyacrylate ethyl ester (poly-EA) during crystallization. The evaporated EA helps remove DMSO, while the poly-EA passivates defects in the perovskite films. This dual-function strategy significantly improves device performance, resulting in efficiencies of 25.4% for small-area devices and 20.3% for 15 cm2 mini-modules. Moreover, poly-EA acts as a protective barrier against moisture and ion migration. Combined with improved DMSO removal, EA-modulated devices demonstrate a T80 lifetime of up to 1800 h under maximum power point tracking at 55–60% relative humidity in ambient air.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Incorporating Interstitial Carbon Atoms and Graphene Quantum Dots in Crystalline Ni(OH)Cl for Ultrastable and Superior Rate Supercapacitors Unleashing the Underestimated Rate Capability of Graphite Anode for Potassium-Ion Batteries by Sn(OTf)2 Electrolyte Additive Anion Localization on Termini of a Non-Fullerene Acceptor Aids Charge Transport Minimizing DMSO Residues in Perovskite Films for Efficient and Long-Term Stable Solar Cells Photoelectrochemical Synthesis of Adipic Acid by Selective Oxidation of Cyclohexanone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1