Khoa Minh Ta, Deyontae O. Wisdom, Lisa J Gillie, David J Cooke, Runliang Zhu, Mario Goncalves, Stephen Parker, Marco Molinari
{"title":"Sorption of Arsenate on Cerium Oxide: A Simulated Infrared and Raman Spectroscopic Identification","authors":"Khoa Minh Ta, Deyontae O. Wisdom, Lisa J Gillie, David J Cooke, Runliang Zhu, Mario Goncalves, Stephen Parker, Marco Molinari","doi":"10.1039/d4en00894d","DOIUrl":null,"url":null,"abstract":"Ceria (CeO2) is a candidate for arsenic removal, and characterizing its surface speciation is crucial for controlling its removal ability. Here, we focus on arsenates and exploit ab initio calculations to study their interaction with the three most stable surfaces of CeO2. The adsorption of arsenate is stronger on the {100} surface followed by the {110} and {111} surfaces. We find that arsenate can potentially adsorb to CeO2 surfaces, with a range of binding configurations. Interestingly, we discovered a 5-fold coordinated As(V) species in a trigonal bipyramidal coordination, which is stable and displays a strong interaction with the surfaces, pulling oxygen out of the surfaces, which should be a valuable model to address in As adsorption experiments such as EXAFS. We then predict the infrared (IR) and Raman spectral signatures, finding that adsorbed arsenates have a characteristic spectral fingerprint between 200 and 1200 cm–1. Characteristic peaks compared with experiments gives confidence in the modelling. The 5-fold coordinated As species in particular shows potential diagnostic As–O stretching modes between 635 and 756 cm–1 in IR spectra and 387-521 cm–1 in Raman spectra. While all binding modes for arsenate adsorption on ceria provide IR active modes, interestingly this is not the case for Raman active modes. Here, we provide a set of reference spectra and binding modes for arsenates on CeO2 that can further experimental characterization of arsenate speciation, and provide control of its impact on the removal performance of cerium dioxide.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"13 8 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00894d","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ceria (CeO2) is a candidate for arsenic removal, and characterizing its surface speciation is crucial for controlling its removal ability. Here, we focus on arsenates and exploit ab initio calculations to study their interaction with the three most stable surfaces of CeO2. The adsorption of arsenate is stronger on the {100} surface followed by the {110} and {111} surfaces. We find that arsenate can potentially adsorb to CeO2 surfaces, with a range of binding configurations. Interestingly, we discovered a 5-fold coordinated As(V) species in a trigonal bipyramidal coordination, which is stable and displays a strong interaction with the surfaces, pulling oxygen out of the surfaces, which should be a valuable model to address in As adsorption experiments such as EXAFS. We then predict the infrared (IR) and Raman spectral signatures, finding that adsorbed arsenates have a characteristic spectral fingerprint between 200 and 1200 cm–1. Characteristic peaks compared with experiments gives confidence in the modelling. The 5-fold coordinated As species in particular shows potential diagnostic As–O stretching modes between 635 and 756 cm–1 in IR spectra and 387-521 cm–1 in Raman spectra. While all binding modes for arsenate adsorption on ceria provide IR active modes, interestingly this is not the case for Raman active modes. Here, we provide a set of reference spectra and binding modes for arsenates on CeO2 that can further experimental characterization of arsenate speciation, and provide control of its impact on the removal performance of cerium dioxide.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis