Strength of low-frequency EEG phase entrainment to external stimuli is associated with fluctuations in the brain's internal state.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2025-01-08 DOI:10.1523/ENEURO.0064-24.2024
Verónica Mäki-Marttunen, Alexandra Velinov, Sander Nieuwenhuis
{"title":"Strength of low-frequency EEG phase entrainment to external stimuli is associated with fluctuations in the brain's internal state.","authors":"Verónica Mäki-Marttunen, Alexandra Velinov, Sander Nieuwenhuis","doi":"10.1523/ENEURO.0064-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively. We recorded pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, pupil size and posterior alpha power were strongly linked with each other. Interestingly, ITC tracked both variables: larger pupil size was associated with a selective increase in entrainment to the task-relevant stimulus sequence, whereas larger posterior alpha power was associated with a <i>decrease</i> in phase entrainment to both the task-relevant and task-irrelevant stimulus sequences. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil maxima and pupil minima. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.<b>Significance statement</b> Fluctuations in cortical state powerfully shape the perception of external stimuli. Understanding the physiological signatures of cortical state fluctuations is crucial to understand how the brain selectively attends and switches between internal and external content. Here we studied how two signatures of attentional state, pupil-linked arousal and power in the alpha band, shape the entrainment of brain activity to low-frequency rhythmic stimuli. Our results reveal common and dissociable influences of these signatures at slow time scales. Furthermore, measuring and including pupil size and posterior alpha power as covariates in statistical models can help increase statistical power in studies focusing on EEG phase entrainment. Our study provides new evidence on a direct influence of cortical state on the perception of rhythmic stimuli.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0064-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively. We recorded pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, pupil size and posterior alpha power were strongly linked with each other. Interestingly, ITC tracked both variables: larger pupil size was associated with a selective increase in entrainment to the task-relevant stimulus sequence, whereas larger posterior alpha power was associated with a decrease in phase entrainment to both the task-relevant and task-irrelevant stimulus sequences. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil maxima and pupil minima. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.Significance statement Fluctuations in cortical state powerfully shape the perception of external stimuli. Understanding the physiological signatures of cortical state fluctuations is crucial to understand how the brain selectively attends and switches between internal and external content. Here we studied how two signatures of attentional state, pupil-linked arousal and power in the alpha band, shape the entrainment of brain activity to low-frequency rhythmic stimuli. Our results reveal common and dissociable influences of these signatures at slow time scales. Furthermore, measuring and including pupil size and posterior alpha power as covariates in statistical models can help increase statistical power in studies focusing on EEG phase entrainment. Our study provides new evidence on a direct influence of cortical state on the perception of rhythmic stimuli.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Failed stopping transiently suppresses the electromyogram in task-irrelevant muscles. Sex-specific contrasting role of BECLIN-1 protein in pain hypersensitivity and anxiety-like behaviors. Ventral pallidal GABAergic neurons drive consumption in male, but not female rats. Cortical HFS-induced neo-Hebbian local plasticity enhances efferent output signal and strengthens afferent input connectivity. Cross-validating the electrophysiological markers of early face categorization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1