{"title":"State-space modelling using wastewater virus and epidemiological data to estimate reported COVID-19 cases and the potential infection numbers.","authors":"Syun-Suke Kadoya, Yubing Li, Yilei Wang, Hiroyuki Katayama, Daisuke Sano","doi":"10.1098/rsif.2024.0456","DOIUrl":null,"url":null,"abstract":"<p><p>The current situation of COVID-19 measures makes it difficult to accurately assess the prevalence of SARS-CoV-2 due to a decrease in reporting rates, leading to missed initial transmission events and subsequent outbreaks. There is growing recognition that wastewater virus data assist in estimating potential infections, including asymptomatic and unreported infections. Understanding the COVID-19 situation hidden behind the reported cases is critical for decision-making when choosing appropriate social intervention measures. However, current models implicitly assume homogeneity in human behaviour, such as virus shedding patterns within the population, making it challenging to predict the emergence of new variants due to variant-specific transmission or shedding parameters. This can result in predictions with considerable uncertainty. In this study, we established a state-space model based on wastewater viral load to predict both reported cases and potential infection numbers. Our model using wastewater virus data showed high goodness-of-fit to COVID-19 case numbers despite the dataset including waves of two distinct variants. Furthermore, the model successfully provided estimates of potential infection, reflecting the superspreading nature of SARS-CoV-2 transmission. This study supports the notion that wastewater surveillance and state-space modelling have the potential to effectively predict both reported cases and potential infections.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240456"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0456","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The current situation of COVID-19 measures makes it difficult to accurately assess the prevalence of SARS-CoV-2 due to a decrease in reporting rates, leading to missed initial transmission events and subsequent outbreaks. There is growing recognition that wastewater virus data assist in estimating potential infections, including asymptomatic and unreported infections. Understanding the COVID-19 situation hidden behind the reported cases is critical for decision-making when choosing appropriate social intervention measures. However, current models implicitly assume homogeneity in human behaviour, such as virus shedding patterns within the population, making it challenging to predict the emergence of new variants due to variant-specific transmission or shedding parameters. This can result in predictions with considerable uncertainty. In this study, we established a state-space model based on wastewater viral load to predict both reported cases and potential infection numbers. Our model using wastewater virus data showed high goodness-of-fit to COVID-19 case numbers despite the dataset including waves of two distinct variants. Furthermore, the model successfully provided estimates of potential infection, reflecting the superspreading nature of SARS-CoV-2 transmission. This study supports the notion that wastewater surveillance and state-space modelling have the potential to effectively predict both reported cases and potential infections.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.