Cohesive urban bicycle infrastructure design through optimal transport routing in multilayer networks.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of The Royal Society Interface Pub Date : 2025-02-01 Epub Date: 2025-02-05 DOI:10.1098/rsif.2024.0532
Alessandro Lonardi, Michael Szell, Caterina De Bacco
{"title":"Cohesive urban bicycle infrastructure design through optimal transport routing in multilayer networks.","authors":"Alessandro Lonardi, Michael Szell, Caterina De Bacco","doi":"10.1098/rsif.2024.0532","DOIUrl":null,"url":null,"abstract":"<p><p>Bicycle infrastructure networks must meet the needs of cyclists to position cycling as a viable transportation choice in cities. In particular, protected infrastructure should be planned cohesively for the whole city and spacious enough to accommodate all cyclists safely and prevent cyclist congestion-a common problem in cycling cities like Copenhagen. Here, we devise an adaptive method for optimal bicycle network design and for evaluating congestion criticalities on bicycle paths. The method goes beyond static network measures, using computationally efficient adaptation rules inspired by optimal transport on the dynamically updating multilayer network of roads and protected bicycle lanes. Street capacities and cyclist flows reciprocally control each other to optimally accommodate cyclists on streets with one control parameter that dictates the preference of bicycle infrastructure over roads. Applying our method to Copenhagen confirms that the city's bicycle network is generally well-developed. However, we are able to identify the network's bottlenecks, and we find, at a finer scale, disparities in network accessibility and criticalities between different neighbourhoods. Our model and results are generalizable beyond this particular case study to serve as a scalable and versatile tool for aiding urban planners in designing cycling-friendly cities.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240532"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793972/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0532","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bicycle infrastructure networks must meet the needs of cyclists to position cycling as a viable transportation choice in cities. In particular, protected infrastructure should be planned cohesively for the whole city and spacious enough to accommodate all cyclists safely and prevent cyclist congestion-a common problem in cycling cities like Copenhagen. Here, we devise an adaptive method for optimal bicycle network design and for evaluating congestion criticalities on bicycle paths. The method goes beyond static network measures, using computationally efficient adaptation rules inspired by optimal transport on the dynamically updating multilayer network of roads and protected bicycle lanes. Street capacities and cyclist flows reciprocally control each other to optimally accommodate cyclists on streets with one control parameter that dictates the preference of bicycle infrastructure over roads. Applying our method to Copenhagen confirms that the city's bicycle network is generally well-developed. However, we are able to identify the network's bottlenecks, and we find, at a finer scale, disparities in network accessibility and criticalities between different neighbourhoods. Our model and results are generalizable beyond this particular case study to serve as a scalable and versatile tool for aiding urban planners in designing cycling-friendly cities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
期刊最新文献
Angular distribution of fractal temporal correlations supports adaptive responses to wobble board instability. Cohesive urban bicycle infrastructure design through optimal transport routing in multilayer networks. Jointed tails enhance control of three-dimensional body rotation. Reciprocating thermochemical mediator of pre-biotic polymer decomposition on mineral surfaces. Bottom-up robust modelling for the foraging behaviour of Physarum polycephalum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1