{"title":"Bottom-up robust modelling for the foraging behaviour of <i>Physarum polycephalum</i>.","authors":"Damiano Reginato, Daniele Proverbio, Giulia Giordano","doi":"10.1098/rsif.2024.0701","DOIUrl":null,"url":null,"abstract":"<p><p>The true slime mould <i>Physarum polycephalum</i> has the remarkable capability to perform self-organized activities such as network formation among food sources. Despite well reproducing the emergence of slime networks, existing models are limited in the investigation of the minimal mechanisms, at the microscopic scale, that ensure robust problem-solving capabilities at the macroscopic scale. To this end, we develop three progressively more complex multi-agent models to provide a flexible framework to understand the self-organized foraging and network formation behaviours of <i>Physarum</i>. The hierarchy of models allows for a stepwise investigation of the minimal set of rules that allow bio-inspired computing agents to achieve the desired behaviours on nutrient-poor substrates. By introducing a quantitative measure of connectedness among food sources, we assess the sensitivity of the model to user-defined and bio-inspired parameters, as well as the robustness of the model to parameter heterogeneity across agents. We ultimately observe the robust emergence of pattern formation, in line with experimental evidence. Overall, our study sheds light on the basic mechanisms of self-organization and paves the way towards the development of decentralized strategies for network formation in engineered systems, focusing on trade-offs between biological fidelity and computational efficiency.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240701"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0701","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The true slime mould Physarum polycephalum has the remarkable capability to perform self-organized activities such as network formation among food sources. Despite well reproducing the emergence of slime networks, existing models are limited in the investigation of the minimal mechanisms, at the microscopic scale, that ensure robust problem-solving capabilities at the macroscopic scale. To this end, we develop three progressively more complex multi-agent models to provide a flexible framework to understand the self-organized foraging and network formation behaviours of Physarum. The hierarchy of models allows for a stepwise investigation of the minimal set of rules that allow bio-inspired computing agents to achieve the desired behaviours on nutrient-poor substrates. By introducing a quantitative measure of connectedness among food sources, we assess the sensitivity of the model to user-defined and bio-inspired parameters, as well as the robustness of the model to parameter heterogeneity across agents. We ultimately observe the robust emergence of pattern formation, in line with experimental evidence. Overall, our study sheds light on the basic mechanisms of self-organization and paves the way towards the development of decentralized strategies for network formation in engineered systems, focusing on trade-offs between biological fidelity and computational efficiency.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.