Sophie Bagur, Jacques Bourg, Alexandre Kempf, Thibault Tarpin, Khalil Bergaoui, Yin Guo, Sebastian Ceballo, Joanna Schwenkgrub, Antonin Verdier, Jean Luc Puel, Jérôme Bourien, Brice Bathellier
{"title":"A spatial code for temporal information is necessary for efficient sensory learning.","authors":"Sophie Bagur, Jacques Bourg, Alexandre Kempf, Thibault Tarpin, Khalil Bergaoui, Yin Guo, Sebastian Ceballo, Joanna Schwenkgrub, Antonin Verdier, Jean Luc Puel, Jérôme Bourien, Brice Bathellier","doi":"10.1126/sciadv.adr6214","DOIUrl":null,"url":null,"abstract":"<p><p>The temporal structure of sensory inputs contains essential information for their interpretation. Sensory cortex represents these temporal cues through two codes: the temporal sequences of neuronal activity and the spatial patterns of neuronal firing rate. However, it is unknown which of these coexisting codes causally drives sensory decisions. To separate their contributions, we generated in the mouse auditory cortex optogenetically driven activity patterns differing exclusively along their temporal or spatial dimensions. Mice could rapidly learn to behaviorally discriminate spatial but not temporal patterns. Moreover, large-scale neuronal recordings across the auditory system revealed that the auditory cortex is the first region in which spatial patterns efficiently represent temporal cues on the timescale of several hundred milliseconds. This feature is shared by the deep layers of neural networks categorizing time-varying sounds. Therefore, the emergence of a spatial code for temporal sensory cues is a necessary condition to efficiently associate temporally structured stimuli with decisions.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 2","pages":"eadr6214"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr6214","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The temporal structure of sensory inputs contains essential information for their interpretation. Sensory cortex represents these temporal cues through two codes: the temporal sequences of neuronal activity and the spatial patterns of neuronal firing rate. However, it is unknown which of these coexisting codes causally drives sensory decisions. To separate their contributions, we generated in the mouse auditory cortex optogenetically driven activity patterns differing exclusively along their temporal or spatial dimensions. Mice could rapidly learn to behaviorally discriminate spatial but not temporal patterns. Moreover, large-scale neuronal recordings across the auditory system revealed that the auditory cortex is the first region in which spatial patterns efficiently represent temporal cues on the timescale of several hundred milliseconds. This feature is shared by the deep layers of neural networks categorizing time-varying sounds. Therefore, the emergence of a spatial code for temporal sensory cues is a necessary condition to efficiently associate temporally structured stimuli with decisions.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.