Teresa Urbano, Marco Vinceti, Chiara Carbone, Lauren A Wise, Marcella Malavolti, Manuela Tondelli, Roberta Bedin, Giulia Vinceti, Alessandro Marti, Annalisa Chiari, Giovanna Zamboni, Bernhard Michalke, Tommaso Filippini
{"title":"Exposure to Cadmium and Other Trace Elements Among Individuals with Mild Cognitive Impairment.","authors":"Teresa Urbano, Marco Vinceti, Chiara Carbone, Lauren A Wise, Marcella Malavolti, Manuela Tondelli, Roberta Bedin, Giulia Vinceti, Alessandro Marti, Annalisa Chiari, Giovanna Zamboni, Bernhard Michalke, Tommaso Filippini","doi":"10.3390/toxics12120933","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A limited number of studies have investigated the role of environmental chemicals in the etiology of mild cognitive impairment (MCI). We performed a cross-sectional study of the association between exposure to selected trace elements and the biomarkers of cognitive decline.</p><p><strong>Methods: </strong>During 2019-2021, we recruited 128 newly diagnosed patients with MCI from two Neurology Clinics in Northern Italy, i.e., Modena and Reggio Emilia. At baseline, we measured serum and cerebrospinal fluid (CSF) concentrations of cadmium, copper, iron, manganese, and zinc using inductively coupled plasma mass spectrometry. With immuno-enzymatic assays, we estimated concentrations of β-amyloid 1-40, β-amyloid 1-42, Total Tau and phosphorylated Tau181 proteins, neurofilament light chain (NfL), and the mini-mental state examination (MMSE) to assess cognitive status. We used spline regression to explore the shape of the association between exposure and each endpoint, adjusted for age at diagnosis, educational attainment, MMSE, and sex.</p><p><strong>Results: </strong>In analyses between the serum and CSF concentrations of trace metals, we found monotonic positive correlations between copper and zinc, while an inverse association was observed for cadmium. Serum cadmium concentrations were inversely associated with amyloid ratio and positively associated with Tau proteins. Serum iron concentrations showed the opposite trend, while copper, manganese, and zinc displayed heterogeneous non-linear associations with amyloid ratio and Tau biomarkers. Regarding CSF exposure biomarkers, only cadmium consistently showed an inverse association with amyloid ratio, while iron was positively associated with Tau. Cadmium concentrations in CSF were not appreciably associated with serum NfL levels, while we observed an inverted U-shaped association with CSF NfL, similar to that observed for copper. In CSF, zinc was the only trace element positively associated with NfL at high concentrations.</p><p><strong>Conclusions: </strong>In this cross-sectional study, high serum cadmium concentrations were associated with selected biomarkers of cognitive impairment. Findings for the other trace elements were difficult to interpret, showing complex and inconsistent associations with the neurodegenerative endpoints examined.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12120933","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: A limited number of studies have investigated the role of environmental chemicals in the etiology of mild cognitive impairment (MCI). We performed a cross-sectional study of the association between exposure to selected trace elements and the biomarkers of cognitive decline.
Methods: During 2019-2021, we recruited 128 newly diagnosed patients with MCI from two Neurology Clinics in Northern Italy, i.e., Modena and Reggio Emilia. At baseline, we measured serum and cerebrospinal fluid (CSF) concentrations of cadmium, copper, iron, manganese, and zinc using inductively coupled plasma mass spectrometry. With immuno-enzymatic assays, we estimated concentrations of β-amyloid 1-40, β-amyloid 1-42, Total Tau and phosphorylated Tau181 proteins, neurofilament light chain (NfL), and the mini-mental state examination (MMSE) to assess cognitive status. We used spline regression to explore the shape of the association between exposure and each endpoint, adjusted for age at diagnosis, educational attainment, MMSE, and sex.
Results: In analyses between the serum and CSF concentrations of trace metals, we found monotonic positive correlations between copper and zinc, while an inverse association was observed for cadmium. Serum cadmium concentrations were inversely associated with amyloid ratio and positively associated with Tau proteins. Serum iron concentrations showed the opposite trend, while copper, manganese, and zinc displayed heterogeneous non-linear associations with amyloid ratio and Tau biomarkers. Regarding CSF exposure biomarkers, only cadmium consistently showed an inverse association with amyloid ratio, while iron was positively associated with Tau. Cadmium concentrations in CSF were not appreciably associated with serum NfL levels, while we observed an inverted U-shaped association with CSF NfL, similar to that observed for copper. In CSF, zinc was the only trace element positively associated with NfL at high concentrations.
Conclusions: In this cross-sectional study, high serum cadmium concentrations were associated with selected biomarkers of cognitive impairment. Findings for the other trace elements were difficult to interpret, showing complex and inconsistent associations with the neurodegenerative endpoints examined.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.