Resistive memory-based zero-shot liquid state machine for multimodal event data learning

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2025-01-09 DOI:10.1038/s43588-024-00751-z
Ning Lin, Shaocong Wang, Yi Li, Bo Wang, Shuhui Shi, Yangu He, Woyu Zhang, Yifei Yu, Yue Zhang, Xinyuan Zhang, Kwunhang Wong, Songqi Wang, Xiaoming Chen, Hao Jiang, Xumeng Zhang, Peng Lin, Xiaoxin Xu, Xiaojuan Qi, Zhongrui Wang, Dashan Shang, Qi Liu, Ming Liu
{"title":"Resistive memory-based zero-shot liquid state machine for multimodal event data learning","authors":"Ning Lin, Shaocong Wang, Yi Li, Bo Wang, Shuhui Shi, Yangu He, Woyu Zhang, Yifei Yu, Yue Zhang, Xinyuan Zhang, Kwunhang Wong, Songqi Wang, Xiaoming Chen, Hao Jiang, Xumeng Zhang, Peng Lin, Xiaoxin Xu, Xiaojuan Qi, Zhongrui Wang, Dashan Shang, Qi Liu, Ming Liu","doi":"10.1038/s43588-024-00751-z","DOIUrl":null,"url":null,"abstract":"The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore’s law and Von Neumann bottleneck, hinder the efficiency of digital computers. In addition, SNNs are characterized by their software training complexities. Here, to this end, we propose a hardware–software co-design on a 40 nm 256 kB in-memory computing macro that physically integrates a fixed and random liquid state machine SNN encoder with trainable artificial neural network projections. We showcase the zero-shot learning of multimodal events on the N-MNIST and N-TIDIGITS datasets, including visual and audio data association, as well as neural and visual data alignment for brain–machine interfaces. Our co-design achieves classification accuracy comparable to fully optimized software models, resulting in a 152.83- and 393.07-fold reduction in training costs compared with state-of-the-art spiking recurrent neural network-based contrastive learning and prototypical networks, and a 23.34- and 160-fold improvement in energy efficiency compared with cutting-edge digital hardware, respectively. These proof-of-principle prototypes demonstrate zero-shot multimodal events learning capability for emerging efficient and compact neuromorphic hardware. This study presents a neuromorphic computing platform capable of learning cross-modal, event-driven signals for efficient real-time knowledge generalization. It also achieves zero-shot transfer learning for multimodal data.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 1","pages":"37-47"},"PeriodicalIF":18.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00751-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore’s law and Von Neumann bottleneck, hinder the efficiency of digital computers. In addition, SNNs are characterized by their software training complexities. Here, to this end, we propose a hardware–software co-design on a 40 nm 256 kB in-memory computing macro that physically integrates a fixed and random liquid state machine SNN encoder with trainable artificial neural network projections. We showcase the zero-shot learning of multimodal events on the N-MNIST and N-TIDIGITS datasets, including visual and audio data association, as well as neural and visual data alignment for brain–machine interfaces. Our co-design achieves classification accuracy comparable to fully optimized software models, resulting in a 152.83- and 393.07-fold reduction in training costs compared with state-of-the-art spiking recurrent neural network-based contrastive learning and prototypical networks, and a 23.34- and 160-fold improvement in energy efficiency compared with cutting-edge digital hardware, respectively. These proof-of-principle prototypes demonstrate zero-shot multimodal events learning capability for emerging efficient and compact neuromorphic hardware. This study presents a neuromorphic computing platform capable of learning cross-modal, event-driven signals for efficient real-time knowledge generalization. It also achieves zero-shot transfer learning for multimodal data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态事件数据学习的电阻式记忆零射击液体状态机。
人脑是一个复杂的尖峰神经网络(SNN),能够通过对已有知识的泛化,以零射击的方式学习多模态信号。值得注意的是,它通过基于事件的信号传播保持最小的功耗。然而,在神经形态硬件中复制人脑存在硬件和软件两方面的挑战。硬件限制,如摩尔定律的减速和冯·诺伊曼瓶颈,阻碍了数字计算机的效率。此外,snn的特点是其软件训练的复杂性。为此,我们提出了一种基于40 nm 256 kB内存计算宏的硬件软件协同设计,该宏物理集成了固定和随机的液态机SNN编码器以及可训练的人工神经网络投影。我们展示了N-MNIST和N-TIDIGITS数据集上多模态事件的零射击学习,包括视觉和音频数据关联,以及脑机接口的神经和视觉数据对齐。我们的共同设计实现了与完全优化的软件模型相当的分类精度,与最先进的基于脉冲循环神经网络的对比学习和原型网络相比,训练成本降低了152.83倍和393.07倍,与先进的数字硬件相比,能源效率分别提高了23.34倍和160倍。这些原理验证原型展示了零射击多模态事件学习能力,用于新兴的高效和紧凑的神经形态硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Unlocking single-cell level and continuous whole-slide insights in spatial transcriptomics with PanoSpace. Discovering the laws behind complex networked systems. Decoding cell state transitions driven by dynamic cell-cell communication in spatial transcriptomics. Mapping cell-cell communication networks onto cell-state transition trajectories via a dynamic model. Riemannian denoising model for molecular structure optimization with chemical accuracy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1