Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2025-01-10 DOI:10.1038/s41929-024-01278-2
Jon-Marc McGregor, Jay T. Bender, Amanda S. Petersen, Louise Cañada, Jan Rossmeisl, Joan F. Brennecke, Joaquin Resasco
{"title":"Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields","authors":"Jon-Marc McGregor, Jay T. Bender, Amanda S. Petersen, Louise Cañada, Jan Rossmeisl, Joan F. Brennecke, Joaquin Resasco","doi":"10.1038/s41929-024-01278-2","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical reduction of CO<sub>2</sub> is sensitive to the microenvironment surrounding catalytic active sites. Although the impact of changing electrolyte composition on rates has been studied intensively in aqueous electrolytes, less is known about the influence of the electrochemical environment in non-aqueous solvents. Here we demonstrate that organic alkylammonium cations influence catalytic performance in non-aqueous media and describe a physical model that rationalizes these observations. Using results from kinetic, spectroscopic and computational techniques, we argue that the strength of the electric field at the catalyst surface is sensitive to the molecular identity of the organic cation in the electrolyte. This is true irrespective of solvent, electrolyte ionic strength or electrolyte anion. Our results suggest that changes in the interfacial electric field strength can be attributed to differences in the cation–electrode distance. Changes in the electric field strength affect CO formation rates as they modify the energetics of the kinetically relevant CO<sub>2</sub> activation step.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"84 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01278-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction of CO2 is sensitive to the microenvironment surrounding catalytic active sites. Although the impact of changing electrolyte composition on rates has been studied intensively in aqueous electrolytes, less is known about the influence of the electrochemical environment in non-aqueous solvents. Here we demonstrate that organic alkylammonium cations influence catalytic performance in non-aqueous media and describe a physical model that rationalizes these observations. Using results from kinetic, spectroscopic and computational techniques, we argue that the strength of the electric field at the catalyst surface is sensitive to the molecular identity of the organic cation in the electrolyte. This is true irrespective of solvent, electrolyte ionic strength or electrolyte anion. Our results suggest that changes in the interfacial electric field strength can be attributed to differences in the cation–electrode distance. Changes in the electric field strength affect CO formation rates as they modify the energetics of the kinetically relevant CO2 activation step.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Coupled cation–electron transfer at the Pt(111)/perfluoro-sulfonic acid ionomer interface and its impact on the oxygen reduction reaction kinetics Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields Confined hot-pressurized water in Brønsted-acidic beta zeolite speeds up the O demethylation of guaiacol Site- and enantioselective allylic and propargylic C–H oxidation enabled by copper-based biomimetic catalysis Publisher Correction: Parahydrogen-enhanced magnetic resonance identification of intermediates in [Fe]-hydrogenase catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1