Modulating the Electronic Properties of Single Ni Atom Catalyst via First‐Shell Coordination Engineering to Boost Electrocatalytic Flue Gas CO2 Reduction

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-11 DOI:10.1002/adfm.202420994
Zhiyuan Wang, Zhen Chen, Xin Du, Yueteng Zhang, Zhongyi Liu, Shuang‐Quan Zang
{"title":"Modulating the Electronic Properties of Single Ni Atom Catalyst via First‐Shell Coordination Engineering to Boost Electrocatalytic Flue Gas CO2 Reduction","authors":"Zhiyuan Wang, Zhen Chen, Xin Du, Yueteng Zhang, Zhongyi Liu, Shuang‐Quan Zang","doi":"10.1002/adfm.202420994","DOIUrl":null,"url":null,"abstract":"Electrochemical converting CO<jats:sub>2</jats:sub> to CO via single atom catalyst is an effective strategy for reducing CO<jats:sub>2</jats:sub> concentration in the atmosphere and achieving a carbon‐neutral cycle. However, the relatively low CO<jats:sub>2</jats:sub> concentration in industrial processes and large energy barriers for activating CO<jats:sub>2</jats:sub> severely obstruct the actual application. Reasonably modulating the coordination shell of the active center is an effective strategy to enhance the activity of single atom catalysts. Herein, a well‐designed single‐atom electrocatalyst Ni‐N<jats:sub>3</jats:sub>S<jats:sub>1</jats:sub> is developed via a large‐scale synthesis strategy. The constructed Ni‐N<jats:sub>3</jats:sub>S‐C exhibits a superior catalytic activity than Ni‐N<jats:sub>4</jats:sub>‐C for CO<jats:sub>2</jats:sub> to CO conversion in H‐type cells, and the industrial‐level current density with excellent durability at a wide pH range can be achieved in gas‐diffusion flow cells. Experimental results and density functional theory (DFT) calculation demonstrate that introducing low electronegative S in an active center can significantly regulate the electronic structure of the active site, promoting the CO<jats:sub>2</jats:sub> adsorption capacity and decreasing the energy barrier of *COOH formation, thus the larger size and flexibility of sulfur mitigate the nickel agglomeration and enhance the stability of Ni‐N<jats:sub>3</jats:sub>S‐C catalyst. This work provides an effective strategy for designing highly active single‐atom catalysts for electrocatalysis via modulating the coordination shell of reactive sites.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"36 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420994","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical converting CO2 to CO via single atom catalyst is an effective strategy for reducing CO2 concentration in the atmosphere and achieving a carbon‐neutral cycle. However, the relatively low CO2 concentration in industrial processes and large energy barriers for activating CO2 severely obstruct the actual application. Reasonably modulating the coordination shell of the active center is an effective strategy to enhance the activity of single atom catalysts. Herein, a well‐designed single‐atom electrocatalyst Ni‐N3S1 is developed via a large‐scale synthesis strategy. The constructed Ni‐N3S‐C exhibits a superior catalytic activity than Ni‐N4‐C for CO2 to CO conversion in H‐type cells, and the industrial‐level current density with excellent durability at a wide pH range can be achieved in gas‐diffusion flow cells. Experimental results and density functional theory (DFT) calculation demonstrate that introducing low electronegative S in an active center can significantly regulate the electronic structure of the active site, promoting the CO2 adsorption capacity and decreasing the energy barrier of *COOH formation, thus the larger size and flexibility of sulfur mitigate the nickel agglomeration and enhance the stability of Ni‐N3S‐C catalyst. This work provides an effective strategy for designing highly active single‐atom catalysts for electrocatalysis via modulating the coordination shell of reactive sites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过第一壳配位工程调节单镍原子催化剂的电子性质以促进电催化烟气CO2还原
通过单原子催化剂将CO2电化学转化为CO是降低大气中CO2浓度和实现碳中性循环的有效策略。然而,工业过程中CO2浓度较低,激活CO2的能量障碍较大,严重阻碍了实际应用。合理调节活性中心配位壳层是提高单原子催化剂活性的有效策略。本文通过大规模合成策略开发了一种设计良好的单原子电催化剂Ni - N3S1。构建的Ni - N3S - C在H型电池中表现出比Ni - N4 - C更好的催化活性,并且在宽pH范围内具有优异耐久性的工业级电流密度可以在气体扩散流动电池中实现。实验结果和密度泛函理论(DFT)计算表明,在活性中心引入低电负性S可以显著调节活性位点的电子结构,提高CO2吸附能力,降低*COOH形成的能垒,从而使硫的较大尺寸和柔顺性减轻镍的团聚,增强Ni - N3S - C催化剂的稳定性。这项工作为通过调节反应位点的配位壳来设计高活性的电催化单原子催化剂提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Coherent Single-Atom Dipole–Dipole Coupling Mediates Holistic Regulation of K+ Migration for Superior Energy Storage and Dendrite-Free Metal Deposition Optical Control of Ferroelectric Imprint in BiFeO3 Activation of Semiconductor/Electrocatalyst/Electrolyte Interfaces Through Ligand Engineering for Boosting Photoelectrochemical Water Splitting Heterostructure-Derived Heterovalent Fe(OH)2/Fe Pair Sites: Tuning Adsorption of Intermediates and Enhancing Utilization of Atomic *H for Efficient Nitrate Reduction to Ammonia Janus Membrane for Simultaneous Water Purification and Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1