Super-resolution expansion microscopy in plant roots

Michelle Gallei, Sven Truckenbrodt, Caroline Kreuzinger, Syamala Inumella, Vitali Vistunou, Christoph Sommer, Mojtaba R Tavakoli, Nathalie Agudelo Dueñas, Jakob Vorlaufer, Wiebke Jahr, Marek Randuch, Alexander Johnson, Eva Benková, Jiří Friml, Johann G Danzl
{"title":"Super-resolution expansion microscopy in plant roots","authors":"Michelle Gallei, Sven Truckenbrodt, Caroline Kreuzinger, Syamala Inumella, Vitali Vistunou, Christoph Sommer, Mojtaba R Tavakoli, Nathalie Agudelo Dueñas, Jakob Vorlaufer, Wiebke Jahr, Marek Randuch, Alexander Johnson, Eva Benková, Jiří Friml, Johann G Danzl","doi":"10.1093/plcell/koaf006","DOIUrl":null,"url":null,"abstract":"Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants’ challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample. However, its application to plants has been hindered by the rigid, mechanically cohesive structure of plant tissues. Here, we report on whole-mount expansion microscopy of thale cress (Arabidopsis thaliana) root tissues (PlantEx), achieving a four-fold resolution increase over conventional microscopy. Our results highlight the microtubule cytoskeleton organization and interaction between molecularly defined cellular constituents. Combining PlantEx with stimulated emission depletion (STED) microscopy, we increase nanoscale resolution and visualize the complex organization of subcellular organelles from intact tissues by example of the densely packed COPI-coated vesicles associated with the Golgi apparatus and put these into a cellular structural context. Our results show that expansion microscopy can be applied to increase effective imaging resolution in Arabidopsis root specimens.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants’ challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample. However, its application to plants has been hindered by the rigid, mechanically cohesive structure of plant tissues. Here, we report on whole-mount expansion microscopy of thale cress (Arabidopsis thaliana) root tissues (PlantEx), achieving a four-fold resolution increase over conventional microscopy. Our results highlight the microtubule cytoskeleton organization and interaction between molecularly defined cellular constituents. Combining PlantEx with stimulated emission depletion (STED) microscopy, we increase nanoscale resolution and visualize the complex organization of subcellular organelles from intact tissues by example of the densely packed COPI-coated vesicles associated with the Golgi apparatus and put these into a cellular structural context. Our results show that expansion microscopy can be applied to increase effective imaging resolution in Arabidopsis root specimens.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SOS2 phosphorylates FREE1 to regulate multi-vesicular body trafficking and vacuolar dynamics under salt stress Super-resolution expansion microscopy in plant roots A regulatory network involving calmodulin controls phytosulfokine peptide processing during drought-induced flower abscission MicroRNA analysis reveals two modules that antagonistically regulate xylem tracheary element development in Arabidopsis Red peel regulator1 links Ethylene response factor 25 and β-citraurin biosynthetic genes to regulate ethylene-induced peel reddening in citrus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1